MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex7_2_2
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.38881162 (ANTIGONE) -0.38881181 (BARON) -0.38881143 (COUENNE) -0.38881145 (LINDO) -0.38881203 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Adjiman, C S, Dallwig, S, Floudas, C A, and Neumaier, A, A Global Optimization Method, alpha-BB, For General Twice-Differentiable NLPs - I. Theoretical Advances, Computers and Chemical Engineering, 22:9, 1998, 1137-1158. Ryoo, H S and Sahinidis, N V, Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design, Computers and Chemical Engineering, 19:5, 1995, 551-566. Manousiouthakis, V and Sourlas, D, A Global Optimization Approach to Rationally Constrained Rational Programming, Chemical Engineering Communications, 115:1, 1992, 127-147. Maranas, C D and Floudas, C A, Global Optimization in Generalized Geometric Programming, Computers and Chemical Engineering, 21:4, 1997, 351-369. |
Sourceⓘ | Test Problem ex7.2.2 of Chapter 7 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 5 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 4 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 1 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 15 |
#Nonlinear Nonzeros in Jacobianⓘ | 10 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.5272e-02 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 6 5 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 17 7 10 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,objvar; Positive Variables x1,x2,x3,x4; Equations e1,e2,e3,e4,e5,e6; e1.. x4 + objvar =E= 0; e2.. 0.09755988*x1*x5 + x1 =E= 1; e3.. 0.0965842812*x2*x6 + x2 - x1 =E= 0; e4.. 0.0391908*x3*x5 + x3 + x1 =E= 1; e5.. 0.03527172*x4*x6 + x4 - x1 + x2 - x3 =E= 0; e6.. x5**0.5 + x6**0.5 =L= 4; * set non-default bounds x1.up = 1; x2.up = 1; x3.up = 1; x4.up = 1; x5.lo = 1E-5; x5.up = 16; x6.lo = 1E-5; x6.up = 16; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f