MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex7_3_3
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.81752905 (ANTIGONE) 0.81752905 (BARON) 0.81752905 (COUENNE) 0.81752903 (GUROBI) 0.81752905 (LINDO) 0.81752903 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Ackermann, J, Kaesbauer, D, and Muench, R, Robust Gamma-Stability Analysis in a Plant Parameter Space, Automatica, 27:1, 1991, 75-85. |
Sourceⓘ | Test Problem ex7.3.3 of Chapter 7 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCP |
#Variablesⓘ | 5 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 3 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 8 |
#Linear Constraintsⓘ | 6 |
#Quadratic Constraintsⓘ | 2 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 20 |
#Nonlinear Nonzeros in Jacobianⓘ | 5 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 5 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 1 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.5000e-01 |
Maximal coefficientⓘ | 7.8000e+01 |
Infeasibility of initial pointⓘ | 44 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 9 3 0 6 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 6 6 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 22 17 5 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,objvar; Positive Variables x4; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9; e1.. - x5 + objvar =E= 0; e2.. 9.625*x1*x4 - 4*x1 - 78*x4 + 16*x2*x4 - x2 + 16*sqr(x4) + x3 =E= -12; e3.. 16*x1*x4 - 19*x1 - 24*x4 - 8*x2 - x3 =E= -44; e4.. x1 - 0.25*x5 =L= 2.25; e5.. - x1 - 0.25*x5 =L= -2.25; e6.. - x2 - 0.5*x5 =L= -1.5; e7.. x2 - 0.5*x5 =L= 1.5; e8.. - x3 - 1.5*x5 =L= -1.5; e9.. x3 - 1.5*x5 =L= 1.5; * set non-default bounds x4.up = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f