MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_1_2
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1.11520019 (COUENNE) -1.07086102 (LINDO) -1.07086189 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Maranas, C D and Floudas, C A, Global Minimum Potential Energy Conformations of Small Molecules, Journal of Global Optimization, 4:2, 1994, 135-170. |
Sourceⓘ | Test Problem ex8.1.2 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 1 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 1 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconvex |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 1 |
#Constraintsⓘ | 0 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | cos div power |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 0 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 1 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0944e+00 |
Maximal coefficientⓘ | 6.0080e+05 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 2 2 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 2 1 1 0 * * Solve m using NLP minimizing objvar; Variables x1,objvar; Positive Variables x1; Equations e1; e1.. -(588600/POWER(10.8095222429746 - 4.21478541710781*cos((-2.09439333333333) + x1),6) - 1079.1/POWER(10.8095222429746 - 4.21478541710781*cos((- 2.09439333333333) + x1),3) + 600800/POWER(10.8095222429746 - 4.21478541710781*cos(x1),6) - 1071.5/POWER(10.8095222429746 - 4.21478541710781*cos(x1),3) + 481300/POWER(10.8095222429746 - 4.21478541710781*cos(2.09439333333333 + x1),6) - 1064.6/POWER( 10.8095222429746 - 4.21478541710781*cos(2.09439333333333 + x1),3)) + objvar =E= 0; * set non-default bounds x1.up = 6.28318; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f