MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_4_2
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.23226393 (ANTIGONE) 0.39707243 (BARON) 0.12066402 (COUENNE) 0.44232599 (LINDO) 0.48442465 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Esposito, W R and Floudas, C A, Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach, Industrial and Engineering Chemistry Research, 37:5, 1998, 1841-1858. Tjoa, I B and Biegler, L T, Reduced Successive Quadratic Programming Strategy for Errors-in-Variables Estimation, Computers and Chemical Engineering, 16:6, 1992, 523-533. |
Sourceⓘ | Test Problem ex8.4.2 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 24 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 23 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 20 |
#Constraintsⓘ | 10 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 10 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 60 |
#Nonlinear Nonzeros in Jacobianⓘ | 40 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 80 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
#Blocks in Hessian of Lagrangianⓘ | 11 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 13 |
Average blocksize in Hessian of Lagrangianⓘ | 2.090909 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 9.0000e-01 |
Maximal coefficientⓘ | 7.4000e+00 |
Infeasibility of initial pointⓘ | 693.7 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 11 11 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 25 25 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 81 21 60 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,objvar; Positive Variables x21; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11; e1.. -(sqr(x1) + sqr((-5.9) + x2) + sqr((-0.9) + x3) + sqr((-5.4) + x4) + sqr(( -1.8) + x5) + sqr((-4.4) + x6) + sqr((-2.6) + x7) + sqr((-4.6) + x8) + sqr((-3.3) + x9) + sqr((-3.5) + x10) + sqr((-4.4) + x11) + sqr((-3.7) + x12) + sqr((-5.2) + x13) + sqr((-2.8) + x14) + sqr((-6.1) + x15) + sqr((- 2.8) + x16) + sqr((-6.5) + x17) + sqr((-2.4) + x18) + sqr((-7.4) + x19) + sqr((-1.5) + x20)) + objvar =E= 0; e2.. x22*x1 + sqr(x1)*x23 + POWER(x1,3)*x24 - x2 + x21 =E= 0; e3.. x22*x3 + sqr(x3)*x23 + POWER(x3,3)*x24 - x4 + x21 =E= 0; e4.. x22*x5 + sqr(x5)*x23 + POWER(x5,3)*x24 - x6 + x21 =E= 0; e5.. x22*x7 + sqr(x7)*x23 + POWER(x7,3)*x24 - x8 + x21 =E= 0; e6.. x22*x9 + sqr(x9)*x23 + POWER(x9,3)*x24 - x10 + x21 =E= 0; e7.. x22*x11 + sqr(x11)*x23 + POWER(x11,3)*x24 - x12 + x21 =E= 0; e8.. x22*x13 + sqr(x13)*x23 + POWER(x13,3)*x24 - x14 + x21 =E= 0; e9.. x22*x15 + sqr(x15)*x23 + POWER(x15,3)*x24 - x16 + x21 =E= 0; e10.. x22*x17 + sqr(x17)*x23 + POWER(x17,3)*x24 - x18 + x21 =E= 0; e11.. x22*x19 + sqr(x19)*x23 + POWER(x19,3)*x24 - x20 + x21 =E= 0; * set non-default bounds x1.lo = -0.5; x1.up = 0.5; x2.lo = 5.4; x2.up = 6.4; x3.lo = 0.4; x3.up = 1.4; x4.lo = 4.9; x4.up = 5.9; x5.lo = 1.3; x5.up = 2.3; x6.lo = 3.9; x6.up = 4.9; x7.lo = 2.1; x7.up = 3.1; x8.lo = 4.1; x8.up = 5.1; x9.lo = 2.8; x9.up = 3.8; x10.lo = 3; x10.up = 4; x11.lo = 3.9; x11.up = 4.9; x12.lo = 3.2; x12.up = 4.2; x13.lo = 4.7; x13.up = 5.7; x14.lo = 2.3; x14.up = 3.3; x15.lo = 5.6; x15.up = 6.6; x16.lo = 2.3; x16.up = 3.3; x17.lo = 6; x17.up = 7; x18.lo = 1.9; x18.up = 2.9; x19.lo = 6.9; x19.up = 7.9; x20.lo = 1; x20.up = 2; x21.up = 10; x22.lo = -2; x22.up = 2; x23.lo = -2; x23.up = 2; x24.lo = -2; x24.up = 2; * set non-default levels x1.l = -0.328252868; x2.l = 6.243266708; x3.l = 0.950375356; x4.l = 5.201137904; x5.l = 1.592212117; x6.l = 4.124052867; x7.l = 2.449830504; x8.l = 4.956270347; x9.l = 2.867113723; x10.l = 3.500210669; x11.l = 4.898117627; x12.l = 3.778733378; x13.l = 5.691133039; x14.l = 3.062250467; x15.l = 5.730692483; x16.l = 2.939718759; x17.l = 6.159517864; x18.l = 2.150080533; x19.l = 7.568928609; x20.l = 1.435356381; x21.l = 3.59700266; x22.l = -0.594234528; x23.l = -1.47403364; x24.l = -1.399592848; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f