MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_4_4
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.21245744 (ANTIGONE) 0.21245932 (BARON) 0.21245984 (COUENNE) 0.21245901 (LINDO) 0.21245774 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Esposito, W R and Floudas, C A, Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach, Industrial and Engineering Chemistry Research, 37:5, 1998, 1841-1858. Csendes, T and Ratz, D, Subdivision Direction Selection in Interval Methods for Global Optimization, SIAM Journal on Numerical Analysis, 34:3, 1997, 922-938. |
| Sourceⓘ | Test Problem ex8.4.4 of Chapter 8 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 17 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 15 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 12 |
| #Nonlinear Nonzeros in Objectiveⓘ | 12 |
| #Constraintsⓘ | 12 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 12 |
| Operands in Gen. Nonlin. Functionsⓘ | cvpower div |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 48 |
| #Nonlinear Nonzeros in Jacobianⓘ | 24 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 17 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 13 |
| #Blocks in Hessian of Lagrangianⓘ | 13 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.153846 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e-01 |
| Maximal coefficientⓘ | 5.0000e+00 |
| Infeasibility of initial pointⓘ | 3.131 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 13 13 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 18 18 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 61 25 36 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,objvar;
Negative Variables x6;
Positive Variables x13,x14,x16,x17;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13;
e1.. -(sqr((-5) + x1) + sqr(5 + x2) + sqr((-3) + x3) + sqr(2 + x4) + sqr((-2)
+ x5) + sqr(1 + x6) + sqr((-1.5) + x7) + sqr(0.5 + x8) + sqr((-1.2) + x9)
+ sqr(0.2 + x10) + sqr((-1.1) + x11) + sqr(0.1 + x12)) + objvar =E= 0;
e2.. x14/0.1570795**x15 - x1 + x13 =E= 0;
e3.. x14/0.314159**x15 - x3 + x13 =E= 0;
e4.. x14/0.4712385**x15 - x5 + x13 =E= 0;
e5.. x14/0.628318**x15 - x7 + x13 =E= 0;
e6.. x14/0.7853975**x15 - x9 + x13 =E= 0;
e7.. x14/0.942477**x15 - x11 + x13 =E= 0;
e8.. -x17/0.1570795**x15 - x2 + 0.1570795*x16 =E= 0;
e9.. -x17/0.314159**x15 - x4 + 0.314159*x16 =E= 0;
e10.. -x17/0.4712385**x15 - x6 + 0.4712385*x16 =E= 0;
e11.. -x17/0.628318**x15 - x8 + 0.628318*x16 =E= 0;
e12.. -x17/0.7853975**x15 - x10 + 0.7853975*x16 =E= 0;
e13.. -x17/0.942477**x15 - x12 + 0.942477*x16 =E= 0;
* set non-default bounds
x1.lo = 4; x1.up = 6;
x2.lo = -6; x2.up = -4;
x3.lo = 2; x3.up = 4;
x4.lo = -3; x4.up = -1;
x5.lo = 1; x5.up = 3;
x6.lo = -2;
x7.lo = 0.5; x7.up = 2.5;
x8.lo = -1.5; x8.up = 0.5;
x9.lo = 0.2; x9.up = 2.2;
x10.lo = -1.2; x10.up = 0.8;
x11.lo = 0.1; x11.up = 2.1;
x12.lo = -1.1; x12.up = 0.9;
x13.up = 1;
x14.up = 1;
x15.lo = 1.1; x15.up = 1.3;
x16.up = 1;
x17.up = 1;
* set non-default levels
x1.l = 4.343494264;
x2.l = -4.313466584;
x3.l = 3.100750712;
x4.l = -2.397724192;
x5.l = 1.584424234;
x6.l = -1.551894266;
x7.l = 1.199661008;
x8.l = 0.212540694;
x9.l = 0.334227446;
x10.l = -0.199578662;
x11.l = 2.096235254;
x12.l = 0.057466756;
x13.l = 0.991133039;
x14.l = 0.762250467;
x15.l = 1.1261384966;
x16.l = 0.639718759;
x17.l = 0.159517864;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

