MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_4_5
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.00030748 (ANTIGONE) 0.00030748 (BARON) 0.00030749 (COUENNE) 0.00030644 (GUROBI) 0.00030740 (LINDO) 0.00030671 (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Moore, R E, Hansen, E, and Leclerc, A, Rigorous Methods for Global Optimization. In Floudas, C A and M, Pardalos P, Eds, Recent Advances in Global Optimization, Princeton University Press, 1992, 321-342. Esposito, W R and Floudas, C A, Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach, Industrial and Engineering Chemistry Research, 37:5, 1998, 1841-1858. |
| Sourceⓘ | Test Problem ex8.4.5 of Chapter 8 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 15 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 15 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 11 |
| #Nonlinear Nonzeros in Objectiveⓘ | 11 |
| #Constraintsⓘ | 11 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 11 |
| Operands in Gen. Nonlin. Functionsⓘ | div mul |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 55 |
| #Nonlinear Nonzeros in Jacobianⓘ | 44 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 25 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 13 |
| #Blocks in Hessian of Lagrangianⓘ | 12 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.25 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 3.9062e-03 |
| Maximal coefficientⓘ | 1.6000e+01 |
| Infeasibility of initial pointⓘ | 0.1575 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 12 12 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 16 16 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 67 12 55 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,objvar;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12;
e1.. -(sqr((-0.1957) + x1) + sqr((-0.1947) + x2) + sqr((-0.1735) + x3) + sqr((-
0.16) + x4) + sqr((-0.0844) + x5) + sqr((-0.0627) + x6) + sqr((-0.0456) +
x7) + sqr((-0.0342) + x8) + sqr((-0.0323) + x9) + sqr((-0.0235) + x10) +
sqr((-0.0246) + x11)) + objvar =E= 0;
e2.. x12*(16 + 4*x13)/(16 + 4*x14 + x15) - x1 =E= 0;
e3.. x12*(4 + 2*x13)/(4 + 2*x14 + x15) - x2 =E= 0;
e4.. x12*(1 + x13)/(1 + x14 + x15) - x3 =E= 0;
e5.. x12*(0.25 + 0.5*x13)/(0.25 + 0.5*x14 + x15) - x4 =E= 0;
e6.. x12*(0.0625 + 0.25*x13)/(0.0625 + 0.25*x14 + x15) - x5 =E= 0;
e7.. x12*(0.0277777777777778 + 0.166666666666667*x13)/(0.0277777777777778 +
0.166666666666667*x14 + x15) - x6 =E= 0;
e8.. x12*(0.015625 + 0.125*x13)/(0.015625 + 0.125*x14 + x15) - x7 =E= 0;
e9.. x12*(0.01 + 0.1*x13)/(0.01 + 0.1*x14 + x15) - x8 =E= 0;
e10.. x12*(0.00694444444444444 + 0.0833333333333333*x13)/(0.00694444444444444
+ 0.0833333333333333*x14 + x15) - x9 =E= 0;
e11.. x12*(0.00510204081632653 + 0.0714285714285714*x13)/(0.00510204081632653
+ 0.0714285714285714*x14 + x15) - x10 =E= 0;
e12.. x12*(0.00390625 + 0.0625*x13)/(0.00390625 + 0.0625*x14 + x15) - x11 =E= 0
;
* set non-default bounds
x1.lo = 0.1757; x1.up = 0.2157;
x2.lo = 0.1747; x2.up = 0.2147;
x3.lo = 0.1535; x3.up = 0.1935;
x4.lo = 0.14; x4.up = 0.18;
x5.lo = 0.0644; x5.up = 0.1044;
x6.lo = 0.0427; x6.up = 0.0827;
x7.lo = 0.0256; x7.up = 0.0656;
x8.lo = 0.0142; x8.up = 0.0542;
x9.lo = 0.0123; x9.up = 0.0523;
x10.lo = 0.0035; x10.up = 0.0435;
x11.lo = 0.0046; x11.up = 0.0446;
x12.lo = -0.2892; x12.up = 0.2893;
x13.lo = -0.2892; x13.up = 0.2893;
x14.lo = -0.2892; x14.up = 0.2893;
x15.lo = -0.2892; x15.up = 0.2893;
* set non-default levels
x1.l = 0.18256988528;
x2.l = 0.20843066832;
x3.l = 0.17551501424;
x4.l = 0.15204551616;
x5.l = 0.07608848468;
x6.l = 0.05166211468;
x7.l = 0.03959322016;
x8.l = 0.04845081388;
x9.l = 0.01498454892;
x10.l = 0.02350842676;
x11.l = 0.04452470508;
x12.l = 0.045597259173;
x13.l = 0.2841704630615;
x14.l = 0.1517618951595;
x15.l = -0.2135943985845;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

