MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_4_5
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.00030748 (ANTIGONE) 0.00030745 (BARON) 0.00030749 (COUENNE) 0.00030740 (LINDO) 0.00030671 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Moore, R E, Hansen, E, and Leclerc, A, Rigorous Methods for Global Optimization. In Floudas, C A and M, Pardalos P, Eds, Recent Advances in Global Optimization, Princeton University Press, 1992, 321-342. Esposito, W R and Floudas, C A, Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach, Industrial and Engineering Chemistry Research, 37:5, 1998, 1841-1858. |
Sourceⓘ | Test Problem ex8.4.5 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 15 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 15 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 11 |
#Nonlinear Nonzeros in Objectiveⓘ | 11 |
#Constraintsⓘ | 11 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 11 |
Operands in Gen. Nonlin. Functionsⓘ | div mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 55 |
#Nonlinear Nonzeros in Jacobianⓘ | 44 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 25 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 13 |
#Blocks in Hessian of Lagrangianⓘ | 12 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 1.25 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.9062e-03 |
Maximal coefficientⓘ | 1.6000e+01 |
Infeasibility of initial pointⓘ | 0.1575 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 12 12 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 16 16 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 67 12 55 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12; e1.. -(sqr((-0.1957) + x1) + sqr((-0.1947) + x2) + sqr((-0.1735) + x3) + sqr((- 0.16) + x4) + sqr((-0.0844) + x5) + sqr((-0.0627) + x6) + sqr((-0.0456) + x7) + sqr((-0.0342) + x8) + sqr((-0.0323) + x9) + sqr((-0.0235) + x10) + sqr((-0.0246) + x11)) + objvar =E= 0; e2.. x12*(16 + 4*x13)/(16 + 4*x14 + x15) - x1 =E= 0; e3.. x12*(4 + 2*x13)/(4 + 2*x14 + x15) - x2 =E= 0; e4.. x12*(1 + x13)/(1 + x14 + x15) - x3 =E= 0; e5.. x12*(0.25 + 0.5*x13)/(0.25 + 0.5*x14 + x15) - x4 =E= 0; e6.. x12*(0.0625 + 0.25*x13)/(0.0625 + 0.25*x14 + x15) - x5 =E= 0; e7.. x12*(0.0277777777777778 + 0.166666666666667*x13)/(0.0277777777777778 + 0.166666666666667*x14 + x15) - x6 =E= 0; e8.. x12*(0.015625 + 0.125*x13)/(0.015625 + 0.125*x14 + x15) - x7 =E= 0; e9.. x12*(0.01 + 0.1*x13)/(0.01 + 0.1*x14 + x15) - x8 =E= 0; e10.. x12*(0.00694444444444444 + 0.0833333333333333*x13)/(0.00694444444444444 + 0.0833333333333333*x14 + x15) - x9 =E= 0; e11.. x12*(0.00510204081632653 + 0.0714285714285714*x13)/(0.00510204081632653 + 0.0714285714285714*x14 + x15) - x10 =E= 0; e12.. x12*(0.00390625 + 0.0625*x13)/(0.00390625 + 0.0625*x14 + x15) - x11 =E= 0 ; * set non-default bounds x1.lo = 0.1757; x1.up = 0.2157; x2.lo = 0.1747; x2.up = 0.2147; x3.lo = 0.1535; x3.up = 0.1935; x4.lo = 0.14; x4.up = 0.18; x5.lo = 0.0644; x5.up = 0.1044; x6.lo = 0.0427; x6.up = 0.0827; x7.lo = 0.0256; x7.up = 0.0656; x8.lo = 0.0142; x8.up = 0.0542; x9.lo = 0.0123; x9.up = 0.0523; x10.lo = 0.0035; x10.up = 0.0435; x11.lo = 0.0046; x11.up = 0.0446; x12.lo = -0.2892; x12.up = 0.2893; x13.lo = -0.2892; x13.up = 0.2893; x14.lo = -0.2892; x14.up = 0.2893; x15.lo = -0.2892; x15.up = 0.2893; * set non-default levels x1.l = 0.18256988528; x2.l = 0.20843066832; x3.l = 0.17551501424; x4.l = 0.15204551616; x5.l = 0.07608848468; x6.l = 0.05166211468; x7.l = 0.03959322016; x8.l = 0.04845081388; x9.l = 0.01498454892; x10.l = 0.02350842676; x11.l = 0.04452470508; x12.l = 0.045597259173; x13.l = 0.2841704630615; x14.l = 0.1517618951595; x15.l = -0.2135943985845; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f