MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex8_4_6
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.00000000 (ANTIGONE) 0.00110498 (BARON) 0.00105258 (COUENNE) 0.00061218 (LINDO) 0.00110135 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Esposito, W R and Floudas, C A, Parameter Estimation of Nonlinear Algebraic Models via Global Optimization, Computers and Chemical Engineering, 22, supplement 1, 1998, S213-S220. |
Sourceⓘ | Test Problem ex8.4.6 of Chapter 8 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 14 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 14 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | signomial |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 8 |
#Nonlinear Nonzeros in Objectiveⓘ | 8 |
#Constraintsⓘ | 8 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 8 |
Operands in Gen. Nonlin. Functionsⓘ | exp mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 56 |
#Nonlinear Nonzeros in Jacobianⓘ | 48 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 17 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 11 |
#Blocks in Hessian of Lagrangianⓘ | 11 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 1.272727 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.1600e-02 |
Maximal coefficientⓘ | 1.1800e+02 |
Infeasibility of initial pointⓘ | 0.7958 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 9 9 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 15 15 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 65 9 56 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x12,x13,x14; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9; e1.. -(sqr((-0.1622 + x1)/x1) + sqr((-0.6791 + x2)/x2) + sqr((-0.679 + x3)/x3) + sqr((-0.3875 + x4)/x4) + sqr((-0.1822 + x5)/x5) + sqr((-0.1249 + x6)/x6 ) + sqr((-0.0857 + x7)/x7) + sqr((-0.0616 + x8)/x8)) + objvar =E= 0; e2.. exp(-4*x12)*x9 + exp(-4*x13)*x10 + exp(-4*x14)*x11 - x1 =E= 0; e3.. exp(-8*x12)*x9 + exp(-8*x13)*x10 + exp(-8*x14)*x11 - x2 =E= 0; e4.. exp(-12*x12)*x9 + exp(-12*x13)*x10 + exp(-12*x14)*x11 - x3 =E= 0; e5.. exp(-24*x12)*x9 + exp(-24*x13)*x10 + exp(-24*x14)*x11 - x4 =E= 0; e6.. exp(-48*x12)*x9 + exp(-48*x13)*x10 + exp(-48*x14)*x11 - x5 =E= 0; e7.. exp(-72*x12)*x9 + exp(-72*x13)*x10 + exp(-72*x14)*x11 - x6 =E= 0; e8.. exp(-94*x12)*x9 + exp(-94*x13)*x10 + exp(-94*x14)*x11 - x7 =E= 0; e9.. exp(-118*x12)*x9 + exp(-118*x13)*x10 + exp(-118*x14)*x11 - x8 =E= 0; * set non-default bounds x1.up = 1; x2.up = 1; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.lo = -10; x9.up = 10; x10.lo = -10; x10.up = 10; x11.lo = -10; x11.up = 10; x12.up = 0.5; x13.up = 0.5; x14.up = 0.5; * set non-default levels x1.l = 0.171747132; x2.l = 0.843266708; x3.l = 0.550375356; x4.l = 0.301137904; x5.l = 0.292212117; x6.l = 0.224052867; x7.l = 0.349830504; x8.l = 0.856270347; x9.l = 0.355; x10.l = 2.007; x11.l = -4.575; x12.l = 0.015; x13.l = 0.11; x14.l = 0.285; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f