MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex9_2_2
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 99.99992444 (ANTIGONE) 99.99996919 (BARON) 99.99996939 (COUENNE) 99.99996939 (GUROBI) 99.99996939 (LINDO) 99.99996939 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Shimizu, K and Aiyoshi, E, A New Computational Method for Stackelberg and Min-Max Problems by Use of a Penalty Method, IEEE Transactions on Automatic Control, 26:2, 1981, 460-466. |
Sourceⓘ | Test Problem ex9.2.2 of Chapter 9 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCQP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 11 |
#Linear Constraintsⓘ | 7 |
#Quadratic Constraintsⓘ | 4 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 24 |
#Nonlinear Nonzeros in Jacobianⓘ | 8 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 1.666667 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+01 |
Infeasibility of initial pointⓘ | 60 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 12 9 0 3 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 27 17 10 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12; e1.. x2*x2 + (-10 + x3)*(-10 + x3) - objvar =E= 0; e2.. x2 =L= 15; e3.. - x2 + x3 =L= 0; e4.. - x2 =L= 0; e5.. x2 + x3 + x4 =E= 20; e6.. - x3 + x5 =E= 0; e7.. x3 + x6 =E= 20; e8.. x4*x8 =E= 0; e9.. x5*x9 =E= 0; e10.. x6*x10 =E= 0; e11.. x7*x11 =E= 0; e12.. 2*x2 + 4*x3 + x8 - x9 + x10 =E= 60; * set non-default bounds x4.up = 20; x5.up = 20; x6.up = 20; x7.up = 20; x8.up = 20; x9.up = 20; x10.up = 20; x11.up = 20; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f