MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex9_2_4
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.50000000 (ANTIGONE) 0.50000000 (BARON) 0.50000000 (COUENNE) 0.50000000 (GUROBI) 0.50000000 (LINDO) 0.50000000 (SCIP) |
Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Yezza, A, First-Order Necessary Optimality Conditions for General Bilevel Programming Problems, Journal of Optimization Theory and Applications, 89:1, 1996, 189-219. |
Sourceⓘ | Test Problem ex9.2.4 of Chapter 9 of Floudas e.a. handbook |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QCQP |
#Variablesⓘ | 8 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 7 |
#Linear Constraintsⓘ | 5 |
#Quadratic Constraintsⓘ | 2 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 16 |
#Nonlinear Nonzeros in Jacobianⓘ | 4 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 4 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 1.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 2.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 8 8 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 9 9 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 19 13 6 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9; Positive Variables x3,x4,x5,x6,x7,x8,x9; Equations e1,e2,e3,e4,e5,e6,e7,e8; e1.. (-1 + 0.5*x4)*(-2 + x4) + (-1 + 0.5*x5)*(-2 + x5) - objvar =E= 0; e2.. - x3 + x4 + x5 =E= 0; e3.. - x4 + x6 =E= 0; e4.. - x5 + x7 =E= 0; e5.. x6*x8 =E= 0; e6.. x7*x9 =E= 0; e7.. x2 + x4 - x8 =E= 0; e8.. x2 - x9 =E= -1; * set non-default bounds x6.up = 200; x7.up = 200; x8.up = 200; x9.up = 200; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f