MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance flay02m
Determine the optimal length and width of a number of rectangular patches of land with fixed area, such that the perimeter of the set of patches is minimized.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 37.94625900 (ALPHAECP) 37.94733100 (ANTIGONE) 37.94733169 (BARON) 37.94733192 (BONMIN) 37.94733192 (COUENNE) 37.94733192 (LINDO) 37.94733035 (SCIP) 37.94733094 (SHOT) |
Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
Sourceⓘ | FLay02M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Layout |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 14 |
#Binary Variablesⓘ | 4 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 11 |
#Linear Constraintsⓘ | 9 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 2 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 36 |
#Nonlinear Nonzeros in Jacobianⓘ | 2 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 2 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 7.9000e+01 |
Infeasibility of initial pointⓘ | 49 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 12 2 4 6 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 15 11 4 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 39 37 2 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,b11,b12,b13,b14,objvar; Positive Variables x1,x2,x3,x4,x9,x10; Binary Variables b11,b12,b13,b14; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12; e1.. - 2*x9 - 2*x10 + objvar =E= 0; e2.. - x1 - x5 + x9 =G= 0; e3.. - x2 - x6 + x9 =G= 0; e4.. - x3 - x7 + x10 =G= 0; e5.. - x4 - x8 + x10 =G= 0; e6.. 40/x7 - x5 =L= 0; e7.. 50/x8 - x6 =L= 0; e8.. x1 - x2 + x5 + 69*b11 =L= 69; e9.. - x1 + x2 + x6 + 79*b12 =L= 79; e10.. x3 - x4 + x7 + 69*b13 =L= 69; e11.. - x3 + x4 + x8 + 79*b14 =L= 79; e12.. b11 + b12 + b13 + b14 =E= 1; * set non-default bounds x1.up = 29; x2.up = 29; x3.up = 29; x4.up = 29; x5.lo = 1; x5.up = 40; x6.lo = 1; x6.up = 50; x7.lo = 1; x7.up = 40; x8.lo = 1; x8.up = 50; x9.up = 30; x10.up = 30; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f