MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance flay03m
Determine the optimal length and width of a number of rectangular patches of land with fixed area, such that the perimeter of the set of patches is minimized.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 48.98766000 (ALPHAECP) 48.98979226 (ANTIGONE) 48.98979359 (BARON) 48.98979486 (BONMIN) 48.98978475 (COUENNE) 48.98979439 (LINDO) 48.98979214 (SCIP) 48.98969632 (SHOT) |
| Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
| Sourceⓘ | FLay03M.gms from CMU-IBM MINLP solver project page |
| Applicationⓘ | Layout |
| Added to libraryⓘ | 28 Sep 2013 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 26 |
| #Binary Variablesⓘ | 12 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 3 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 2 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 24 |
| #Linear Constraintsⓘ | 21 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 3 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 84 |
| #Nonlinear Nonzeros in Jacobianⓘ | 3 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 3 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
| #Blocks in Hessian of Lagrangianⓘ | 3 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 8.9000e+01 |
| Infeasibility of initial pointⓘ | 59 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 25 4 6 15 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 27 15 12 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 87 84 3 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x13,x14;
Binary Variables b15,b16,b17,b18,b19,b20,b21,b22,b23,b24,b25,b26;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25;
e1.. - 2*x13 - 2*x14 + objvar =E= 0;
e2.. - x1 - x7 + x13 =G= 0;
e3.. - x2 - x8 + x13 =G= 0;
e4.. - x3 - x9 + x13 =G= 0;
e5.. - x4 - x10 + x14 =G= 0;
e6.. - x5 - x11 + x14 =G= 0;
e7.. - x6 - x12 + x14 =G= 0;
e8.. 40/x10 - x7 =L= 0;
e9.. 50/x11 - x8 =L= 0;
e10.. 60/x12 - x9 =L= 0;
e11.. x1 - x2 + x7 + 69*b15 =L= 69;
e12.. x1 - x3 + x7 + 69*b16 =L= 69;
e13.. x2 - x3 + x8 + 79*b17 =L= 79;
e14.. - x1 + x2 + x8 + 79*b18 =L= 79;
e15.. - x1 + x3 + x9 + 89*b19 =L= 89;
e16.. - x2 + x3 + x9 + 89*b20 =L= 89;
e17.. x4 - x5 + x10 + 69*b21 =L= 69;
e18.. x4 - x6 + x10 + 69*b22 =L= 69;
e19.. x5 - x6 + x11 + 79*b23 =L= 79;
e20.. - x4 + x5 + x11 + 79*b24 =L= 79;
e21.. - x4 + x6 + x12 + 89*b25 =L= 89;
e22.. - x5 + x6 + x12 + 89*b26 =L= 89;
e23.. b15 + b18 + b21 + b24 =E= 1;
e24.. b16 + b19 + b22 + b25 =E= 1;
e25.. b17 + b20 + b23 + b26 =E= 1;
* set non-default bounds
x1.up = 29;
x2.up = 29;
x3.up = 29;
x4.up = 29;
x5.up = 29;
x6.up = 29;
x7.lo = 1; x7.up = 40;
x8.lo = 1; x8.up = 50;
x9.lo = 1; x9.up = 60;
x10.lo = 1; x10.up = 40;
x11.lo = 1; x11.up = 50;
x12.lo = 1; x12.up = 60;
x13.up = 30;
x14.up = 30;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

