MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance gasnet
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 3327325.87700000 (ANTIGONE) 6999381.55500000 (BARON) 3148587.09700000 (COUENNE) 4264881.61900000 (LINDO) 6999381.56200000 (SCIP) 6417617.34900000 (SHOT) |
Referencesⓘ | Edgar, T F, Himmelblau, D M, and Lasdon, L S, Example 13.4. In Edgar, T F, Himmelblau, D M, and Lasdon, L S, Optimization of Chemical Processes, McGraw Hill, Boston, 2001, 469-478. |
Sourceⓘ | GAMS Model Library model gasnet |
Applicationⓘ | Gas Transmission Network Design |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 90 |
#Binary Variablesⓘ | 10 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 77 |
#Nonlinear Binary Variablesⓘ | 10 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 69 |
#Linear Constraintsⓘ | 25 |
#Quadratic Constraintsⓘ | 22 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 22 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 263 |
#Nonlinear Nonzeros in Jacobianⓘ | 130 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 248 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 54 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 75 |
Average blocksize in Hessian of Lagrangianⓘ | 38.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 7.5864e-07 |
Maximal coefficientⓘ | 1.0000e+04 |
Infeasibility of initial pointⓘ | 1.496e+06 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 70 49 11 10 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 91 81 10 0 0 0 0 0 * FX 4 * * Nonzero counts * Total const NL DLL * 267 137 130 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,x88,x89,x90,objvar; Positive Variables x68,x69,x70,x71,x72,x73,x74,x75,x76,x77; Binary Variables b78,b79,b80,b81,b82,b83,b84,b85,b86,b87; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70; e1.. x12 - x24 =G= 0; e2.. x13 - x25 =G= 0; e3.. x14 - x26 =G= 0; e4.. x15 - x27 =G= 0; e5.. x16 - x28 =G= 0; e6.. x17 - x29 =G= 0; e7.. x18 - x30 =G= 0; e8.. x19 - x31 =G= 0; e9.. x20 - x32 =G= 0; e10.. x21 - x33 =G= 0; e11.. x22 - x34 =G= 0; e12.. x1 + x2 + x3 + x4 + x5 + x6 + x7 =E= 175; e13.. x1 + x2 + x3 + x8 + x9 + x10 + x11 =E= 200; e14.. -7.58641e-7*x35**5.33333333333333*(sqr(x12) - sqr(x24))/sqr(x47) + x1 =E= 0; e15.. -7.58641e-7*x36**5.33333333333333*(sqr(x13) - sqr(x25))/sqr(x48) + x2 =E= 0; e16.. -7.58641e-7*x37**5.33333333333333*(sqr(x14) - sqr(x26))/sqr(x49) + x3 =E= 0; e17.. -7.58641e-7*x38**5.33333333333333*(sqr(x15) - sqr(x27))/sqr(x50) + x4 =E= 0; e18.. -7.58641e-7*x39**5.33333333333333*(sqr(x16) - sqr(x28))/sqr(x51) + x5 =E= 0; e19.. -7.58641e-7*x40**5.33333333333333*(sqr(x17) - sqr(x29))/sqr(x52) + x6 =E= 0; e20.. -7.58641e-7*x41**5.33333333333333*(sqr(x18) - sqr(x30))/sqr(x53) + x7 =E= 0; e21.. -7.58641e-7*x42**5.33333333333333*(sqr(x19) - sqr(x31))/sqr(x54) + x8 =E= 0; e22.. -7.58641e-7*x43**5.33333333333333*(sqr(x20) - sqr(x32))/sqr(x55) + x9 =E= 0; e23.. -7.58641e-7*x44**5.33333333333333*(sqr(x21) - sqr(x33))/sqr(x56) + x10 =E= 0; e24.. -7.58641e-7*x45**5.33333333333333*(sqr(x22) - sqr(x34))/sqr(x57) + x11 =E= 0; e25.. x46 - 0.005*x46*b78 - x47 =E= 0; e26.. x47 - 0.005*x47*b79 - x48 =E= 0; e27.. x48 - 0.005*x48*b80 - x49 =E= 0; e28.. x49 - 0.005*x49*b81 - x50 - x54 =E= 0; e29.. x50 - 0.005*x50*b82 - x51 =E= 0; e30.. x51 - 0.005*x51*b83 - x52 =E= 0; e31.. x52 - 0.005*x52*b84 - x53 =E= 0; e32.. x54 - 0.005*x54*b85 - x55 =E= 0; e33.. x55 - 0.005*x55*b86 - x56 =E= 0; e34.. x56 - 0.005*x56*b87 - x57 =E= 0; e35.. -214.9812*(-1 + x58**0.181587301587302)*x47 + x68 =E= 0; e36.. -214.9812*(-1 + x59**0.181587301587302)*x48 + x69 =E= 0; e37.. -214.9812*(-1 + x60**0.181587301587302)*x49 + x70 =E= 0; e38.. -214.9812*(-1 + x61**0.181587301587302)*x50 + x71 =E= 0; e39.. -214.9812*(-1 + x61**0.181587301587302)*x54 + x71 =E= 0; e40.. -214.9812*(-1 + x62**0.181587301587302)*x51 + x72 =E= 0; e41.. -214.9812*(-1 + x63**0.181587301587302)*x52 + x73 =E= 0; e42.. -214.9812*(-1 + x64**0.181587301587302)*x53 + x74 =E= 0; e43.. -214.9812*(-1 + x65**0.181587301587302)*x55 + x75 =E= 0; e44.. -214.9812*(-1 + x66**0.181587301587302)*x56 + x76 =E= 0; e45.. -214.9812*(-1 + x67**0.181587301587302)*x57 + x77 =E= 0; e46.. x58*x23 - x12 =E= 0; e47.. x59*x24 - x13 =E= 0; e48.. x60*x25 - x14 =E= 0; e49.. x61*x26 - x15 =E= 0; e50.. x61*x26 - x19 =E= 0; e51.. x62*x27 - x16 =E= 0; e52.. x63*x28 - x17 =E= 0; e53.. x64*x29 - x18 =E= 0; e54.. x65*x31 - x20 =E= 0; e55.. x66*x32 - x21 =E= 0; e56.. x67*x33 - x22 =E= 0; e57.. x58 - b78 =L= 1; e58.. x59 - b79 =L= 1; e59.. x60 - b80 =L= 1; e60.. x61 - b81 =L= 1; e61.. x62 - b82 =L= 1; e62.. x63 - b83 =L= 1; e63.. x64 - b84 =L= 1; e64.. x65 - b85 =L= 1; e65.. x66 - b86 =L= 1; e66.. x67 - b87 =L= 1; e67.. -(870*x1*x35 + 870*x2*x36 + 870*x3*x37 + 870*x4*x38 + 870*x5*x39 + 870*x6 *x40 + 870*x7*x41 + 870*x8*x42 + 870*x9*x43 + 870*x10*x44 + 870*x11*x45) + x88 =E= 0; e68.. - 70*x68 - 70*x69 - 70*x70 - 70*x71 - 70*x72 - 70*x73 - 70*x74 - 70*x75 - 70*x76 - 70*x77 - 10000*b78 - 10000*b79 - 10000*b80 - 10000*b81 - 10000*b82 - 10000*b83 - 10000*b84 - 10000*b85 - 10000*b86 - 10000*b87 + x89 =E= 0; e69.. - 8*x68 - 8*x69 - 8*x70 - 8*x71 - 8*x72 - 8*x73 - 8*x74 - 8*x75 - 8*x76 - 8*x77 + x90 =E= 0; e70.. - x88 - x89 - x90 + objvar =E= 0; * set non-default bounds x1.lo = 2; x1.up = 200; x2.lo = 2; x2.up = 200; x3.lo = 2; x3.up = 200; x4.lo = 2; x4.up = 200; x5.lo = 2; x5.up = 200; x6.lo = 2; x6.up = 200; x7.lo = 2; x7.up = 200; x8.lo = 2; x8.up = 200; x9.lo = 2; x9.up = 200; x10.lo = 2; x10.up = 200; x11.lo = 2; x11.up = 200; x12.lo = 200; x12.up = 1000; x13.lo = 200; x13.up = 1000; x14.lo = 200; x14.up = 1000; x15.lo = 200; x15.up = 1000; x16.lo = 200; x16.up = 1000; x17.lo = 200; x17.up = 1000; x18.lo = 200; x18.up = 1000; x19.lo = 200; x19.up = 1000; x20.lo = 200; x20.up = 1000; x21.lo = 200; x21.up = 1000; x22.lo = 200; x22.up = 1000; x23.fx = 500; x24.lo = 200; x24.up = 1000; x25.lo = 200; x25.up = 1000; x26.lo = 200; x26.up = 1000; x27.lo = 200; x27.up = 1000; x28.lo = 200; x28.up = 1000; x29.lo = 200; x29.up = 1000; x30.fx = 600; x31.lo = 200; x31.up = 1000; x32.lo = 200; x32.up = 1000; x33.lo = 200; x33.up = 1000; x34.fx = 300; x35.lo = 4; x35.up = 36; x36.lo = 4; x36.up = 36; x37.lo = 4; x37.up = 36; x38.lo = 4; x38.up = 18; x39.lo = 4; x39.up = 18; x40.lo = 4; x40.up = 18; x41.lo = 4; x41.up = 18; x42.lo = 4; x42.up = 18; x43.lo = 4; x43.up = 18; x44.lo = 4; x44.up = 18; x45.lo = 4; x45.up = 18; x46.fx = 600; x47.lo = 200; x47.up = 600; x48.lo = 200; x48.up = 600; x49.lo = 200; x49.up = 600; x50.lo = 200; x50.up = 600; x51.lo = 200; x51.up = 600; x52.lo = 200; x52.up = 600; x53.lo = 200; x53.up = 600; x54.lo = 200; x54.up = 600; x55.lo = 200; x55.up = 600; x56.lo = 200; x56.up = 600; x57.lo = 200; x57.up = 600; x58.lo = 1; x58.up = 2; x59.lo = 1; x59.up = 2; x60.lo = 1; x60.up = 2; x61.lo = 1; x61.up = 2; x62.lo = 1; x62.up = 2; x63.lo = 1; x63.up = 2; x64.lo = 1; x64.up = 2; x65.lo = 1; x65.up = 2; x66.lo = 1; x66.up = 2; x67.lo = 1; x67.up = 2; * set non-default levels x1.l = 20; x2.l = 20; x3.l = 20; x4.l = 20; x5.l = 20; x6.l = 20; x7.l = 20; x8.l = 20; x9.l = 20; x10.l = 20; x11.l = 20; x35.l = 18; x36.l = 18; x37.l = 18; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f