MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance gasprod_sarawak01
Li et al. reformulated the natural gas production model of Selot et al. from a general MINLP to MIQCQP. The modeling files corresponding to these problems have been scaled in accordance with the design of Li et al. The 3 test cases are effectively the same problem with a different number of uncertain scenarios.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -32445.40491000 (ANTIGONE) -32445.40491000 (BARON) -32445.40491000 (COUENNE) -32445.40491000 (GUROBI) -32445.40491000 (LINDO) -32445.40491000 (SCIP) -33085.40491000 (SHOT) |
Referencesⓘ | Selot, Ajay, Kuok, Loi Kwong, Robinson, Mark, Mason, Thomas L, and Barton, Paul I, A short-term operational planning model for natural gas production systems, AIChE Journal, 54:2, 2008, 495-515. Li, Xiang, Armagan, Emre, Tomasgard, Asgeir, and Barton, Paul I, Stochastic pooling problem for natural gas production network design and operation under uncertainty, AIChE Journal, 57:8, 2011, 2120-2135. Li, Xiang, Tomasgard, Asgeir, and Barton, Paul I, Decomposition strategy for the stochastic pooling problem, Journal of Global Optimization, 54:4, 2012, 765-790. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/Sarawak_Scenario1 |
Applicationⓘ | Natural Gas Production |
Added to libraryⓘ | 24 Sep 2013 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 131 |
#Binary Variablesⓘ | 38 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 25 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 37 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 212 |
#Linear Constraintsⓘ | 178 |
#Quadratic Constraintsⓘ | 34 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 551 |
#Nonlinear Nonzeros in Jacobianⓘ | 68 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 68 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 4 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
Average blocksize in Hessian of Lagrangianⓘ | 6.25 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.6870e-03 |
Maximal coefficientⓘ | 9.3000e+03 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 213 100 110 3 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 132 94 38 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 589 521 68 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,objvar; Positive Variables x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213; e1.. - 20*b1 - 520*b2 - 20*b3 - 100*b4 - 20*b5 - 80*b6 - 550*b7 - 80*b9 - 400*b10 - 16*b11 - 50*b13 - 80*b15 - 300*b16 - 500*b17 - 500*b18 - 500*b19 - 500*b21 - 500*b22 - 320*b25 - 40*b26 - 40*b27 - 200*b28 - 200*b29 - 80*b30 - 10*b31 - 600*b32 - 420*b33 - 7500*b37 - 9300*b38 + 12.822715454568*x82 + 12.822715454568*x83 + 12.822715454568*x84 + 12.822715454568*x85 + 12.822715454568*x86 + 12.822715454568*x87 + 12.822715454568*x88 + 12.822715454568*x89 + objvar =E= 14104.9870000248 ; e2.. - x39 =G= -130; e3.. - x40 =G= -125; e4.. - x41 =G= -212; e5.. - x42 =G= -334; e6.. - x43 =G= -833; e7.. - x44 =G= -381; e8.. - x45 =G= -5610; e9.. - x46 =G= -155; e10.. 401*b1 - x47 =G= 0; e11.. 600*b2 - x48 - x49 =G= 0; e12.. 532*b3 - x50 =G= 0; e13.. 816*b4 - x51 =G= 0; e14.. 161*b5 - x52 =G= 0; e15.. 2467*b6 - x53 =G= 0; e16.. 923*b7 - x54 - x55 =G= 0; e17.. 401*b8 - x47 =G= 0; e18.. 600*b9 - x48 =G= 0; e19.. 600*b10 - x49 =G= 0; e20.. 532*b11 - x50 =G= 0; e21.. 816*b12 - x51 =G= 0; e22.. 161*b13 - x52 =G= 0; e23.. 2467*b14 - x53 =G= 0; e24.. 900*b15 - x54 =G= 0; e25.. 900*b16 - x55 =G= 0; e26.. b1 - b8 =G= 0; e27.. b2 - b9 =G= 0; e28.. b2 - b10 =G= 0; e29.. b3 - b11 =G= 0; e30.. b4 - b12 =G= 0; e31.. b5 - b13 =G= 0; e32.. b6 - b14 =G= 0; e33.. b7 - b15 =G= 0; e34.. b7 - b16 =G= 0; e35.. - b1 + b8 =G= 0; e36.. - b2 + b9 + b10 =G= 0; e37.. - b3 + b11 =G= 0; e38.. - b4 + b12 =G= 0; e39.. - b5 + b13 =G= 0; e40.. - b6 + b14 =G= 0; e41.. - b7 + b15 + b16 =G= 0; e42.. - 0.007177*x39 - 0.008782*x40 + x56 =E= 0; e43.. - 0.992823*x39 - 0.991218*x40 + x57 =E= 0; e44.. - 0.002687*x41 - 0.092341*x42 + x58 =E= 0; e45.. - 0.997313*x41 - 0.907659*x42 + x59 =E= 0; e46.. - 0.00684*x44 - 0.016427*x45 + x60 =E= 0; e47.. - 0.99316*x44 - 0.983573*x45 + x61 =E= 0; e48.. - 0.088511*x47 - 0.015894*x48 + x62 =E= 0; e49.. - 0.911489*x47 - 0.984106*x48 + x63 =E= 0; e50.. - 0.024263*x50 - 0.009488*x51 - 0.023048*x52 + x64 =E= 0; e51.. - 0.975737*x50 - 0.990512*x51 - 0.976952*x52 + x65 =E= 0; e52.. - x64 - x66 + x70 =E= 0; e53.. - x65 - x67 + x71 =E= 0; e54.. - 0.0383*x55 - x68 - x76 + x80 =E= 0; e55.. - 0.9617*x55 - x69 - x77 + x81 =E= 0; e56.. x66 - 0.0334*x98 - 0.0383*x99 =E= 0; e57.. x67 - 0.9666*x98 - 0.9617*x99 =E= 0; e58.. x68 - 0.0334*x100 - 0.0383*x101 =E= 0; e59.. x69 - 0.9666*x100 - 0.9617*x101 =E= 0; e60.. x72 - 0.034121*x102 - 0.014483*x103 - x108 - x110 =E= 0; e61.. x73 - 0.965879*x102 - 0.985517*x103 - x109 - x111 =E= 0; e62.. x74 - 0.034121*x104 - 0.014483*x105 - x112 - x114 =E= 0; e63.. x75 - 0.965879*x104 - 0.985517*x105 - x113 - x115 =E= 0; e64.. x76 - 0.015894*x106 - x116 - x118 - x120 =E= 0; e65.. x77 - 0.984106*x106 - x117 - x119 - x121 =E= 0; e66.. x78 - 0.015894*x107 - x122 - x124 - x126 =E= 0; e67.. x79 - 0.984106*x107 - x123 - x125 - x127 =E= 0; e68.. -x90*x53 + x98 =E= 0; e69.. -x90*x54 + x99 =E= 0; e70.. -x91*x53 + x100 =E= 0; e71.. -x91*x54 + x101 =E= 0; e72.. -x92*x43 + x102 =E= 0; e73.. -x92*x46 + x103 =E= 0; e74.. -x93*x43 + x104 =E= 0; e75.. -x93*x46 + x105 =E= 0; e76.. -x94*x49 + x106 =E= 0; e77.. -x95*x49 + x107 =E= 0; e78.. -x92*x58 + x108 =E= 0; e79.. -x92*x59 + x109 =E= 0; e80.. -x92*x60 + x110 =E= 0; e81.. -x92*x61 + x111 =E= 0; e82.. -x93*x58 + x112 =E= 0; e83.. -x93*x59 + x113 =E= 0; e84.. -x93*x60 + x114 =E= 0; e85.. -x93*x61 + x115 =E= 0; e86.. -x94*x62 + x116 =E= 0; e87.. -x94*x63 + x117 =E= 0; e88.. -x94*x70 + x118 =E= 0; e89.. -x94*x71 + x119 =E= 0; e90.. -x94*x72 + x120 =E= 0; e91.. -x94*x73 + x121 =E= 0; e92.. -x95*x62 + x122 =E= 0; e93.. -x95*x63 + x123 =E= 0; e94.. -x95*x70 + x124 =E= 0; e95.. -x95*x71 + x125 =E= 0; e96.. -x95*x72 + x126 =E= 0; e97.. -x95*x73 + x127 =E= 0; e98.. - x56 - x74 + x82 =E= 0; e99.. - x57 - x75 + x83 =E= 0; e100.. - x80 + x88 =E= 0; e101.. - x81 + x89 =E= 0; e102.. x84 - x128 =E= 0; e103.. x85 - x129 =E= 0; e104.. x86 - x130 =E= 0; e105.. x87 - x131 =E= 0; e106.. -x96*x78 + x128 =E= 0; e107.. -x96*x79 + x129 =E= 0; e108.. -x97*x78 + x130 =E= 0; e109.. -x97*x79 + x131 =E= 0; e110.. x90 + x91 =E= 1; e111.. x92 + x93 =E= 1; e112.. x94 + x95 =E= 1; e113.. x96 + x97 =E= 1; e114.. - x56 - x57 =G= -255; e115.. - x58 - x59 =G= -546; e116.. - x60 - x61 =G= -1331; e117.. - x74 - x75 =G= -1400; e118.. 600*b25 - x62 - x63 =G= 0; e119.. 1509*b26 - x64 - x65 =G= 0; e120.. 2200*b27 - x66 - x67 =G= 0; e121.. 900*b28 - x68 - x69 =G= 0; e122.. 2200*b29 - x70 - x71 =G= 0; e123.. 950*b30 - x72 - x73 =G= 0; e124.. 720*b31 - x76 - x77 =G= 0; e125.. 3000*b32 - x78 - x79 =G= 0; e126.. 1800*b33 - x80 - x81 =G= 0; e127.. - x82 - x83 =G= -1400; e128.. 2200*b34 - x84 - x85 =G= 0; e129.. 800*b35 - x86 - x87 =G= 0; e130.. 1800*b36 - x88 - x89 =G= 0; e131.. - b8 + b17 =G= 0; e132.. - b9 + b17 =G= 0; e133.. - b10 + b21 =G= 0; e134.. - b11 + b18 =G= 0; e135.. - b12 + b18 =G= 0; e136.. - b13 + b18 =G= 0; e137.. - b14 + b19 =G= 0; e138.. - b15 + b19 =G= 0; e139.. - b16 + b22 =G= 0; e140.. b21 - b25 =G= 0; e141.. b20 - b26 =G= 0; e142.. b20 - b27 =G= 0; e143.. b22 - b28 =G= 0; e144.. b21 - b29 =G= 0; e145.. b21 - b30 =G= 0; e146.. b22 - b31 =G= 0; e147.. b23 - b32 =G= 0; e148.. b24 - b33 =G= 0; e149.. b17 - b25 =G= 0; e150.. b18 - b26 =G= 0; e151.. b19 - b27 =G= 0; e152.. b19 - b28 =G= 0; e153.. b20 - b29 =G= 0; e154.. b21 - b31 =G= 0; e155.. b21 - b32 =G= 0; e156.. b22 - b33 =G= 0; e157.. b23 - b34 =G= 0; e158.. b23 - b35 =G= 0; e159.. b24 - b36 =G= 0; e160.. b8 + b9 - b17 =G= 0; e161.. b11 + b12 + b13 - b18 =G= 0; e162.. b14 + b15 - b19 =G= 0; e163.. - b20 + b26 + b27 =G= 0; e164.. b10 - b21 + b25 + b29 + b30 =G= 0; e165.. b16 - b22 + b28 + b31 =G= 0; e166.. - b23 + b32 =G= 0; e167.. - b24 + b33 =G= 0; e168.. - b17 + b25 =G= 0; e169.. - b18 + b26 =G= 0; e170.. - b19 + b27 + b28 =G= 0; e171.. - b20 + b29 =G= 0; e172.. - b21 + b31 + b32 =G= 0; e173.. - b22 + b33 =G= 0; e174.. - b23 + b34 + b35 =G= 0; e175.. - b24 + b36 =G= 0; e176.. - x82 - x83 =G= -1100; e177.. 1800*b37 - x84 - x85 =G= 0; e178.. 2400*b38 - x86 - x87 - x88 - x89 =G= 0; e179.. 0.972*x82 - 0.028*x83 =L= 0; e180.. 0.972*x84 - 0.028*x85 =L= 0; e181.. 0.972*x86 - 0.028*x87 + 0.972*x88 - 0.028*x89 =L= 0; e182.. - b34 + b37 =G= 0; e183.. - b35 + b38 =G= 0; e184.. - b36 + b38 =G= 0; e185.. b34 - b37 =G= 0; e186.. b35 + b36 - b38 =G= 0; e187.. b1 - b8 =E= 0; e188.. - b8 + b17 =E= 0; e189.. b4 - b12 =E= 0; e190.. - b12 + b18 =E= 0; e191.. b6 - b14 =E= 0; e192.. - b14 + b19 =E= 0; e193.. b23 - b34 =E= 0; e194.. - b34 + b37 =E= 0; e195.. b24 - b36 =E= 0; e196.. - b36 + b38 =E= 0; e197.. - x43 + x102 + x104 =E= 0; e198.. - x46 + x103 + x105 =E= 0; e199.. - x49 + x106 + x107 =E= 0; e200.. - x53 + x98 + x100 =E= 0; e201.. - x54 + x99 + x101 =E= 0; e202.. - x58 + x108 + x112 =E= 0; e203.. - x59 + x109 + x113 =E= 0; e204.. - x60 + x110 + x114 =E= 0; e205.. - x61 + x111 + x115 =E= 0; e206.. - x62 + x116 + x122 =E= 0; e207.. - x63 + x117 + x123 =E= 0; e208.. - x70 + x118 + x124 =E= 0; e209.. - x71 + x119 + x125 =E= 0; e210.. - x72 + x120 + x126 =E= 0; e211.. - x73 + x121 + x127 =E= 0; e212.. - x78 + x128 + x130 =E= 0; e213.. - x79 + x129 + x131 =E= 0; * set non-default bounds x39.up = 130; x40.up = 125; x41.up = 212; x42.up = 334; x43.up = 833; x44.up = 381; x45.up = 950; x46.up = 155; x47.up = 401; x48.up = 600; x49.up = 600; x50.up = 532; x51.up = 816; x52.up = 161; x53.up = 2467; x54.up = 900; x55.up = 900; x56.up = 255; x57.up = 255; x58.up = 546; x59.up = 546; x60.up = 1331; x61.up = 1331; x62.up = 600; x63.up = 600; x64.up = 1509; x65.up = 1509; x66.up = 2200; x67.up = 2200; x68.up = 900; x69.up = 900; x70.up = 2200; x71.up = 2200; x72.up = 950; x73.up = 950; x74.up = 1400; x75.up = 1400; x76.up = 720; x77.up = 720; x78.up = 3000; x79.up = 3000; x80.up = 1800; x81.up = 1800; x82.up = 1400; x83.up = 1400; x84.up = 2200; x85.up = 2200; x86.up = 800; x87.up = 800; x88.up = 1800; x89.up = 1800; x90.up = 1; x91.up = 1; x92.up = 1; x93.up = 1; x94.up = 1; x95.up = 1; x96.up = 1; x97.up = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f