MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance genpooling_meyer04
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 1086187.13700000 (ANTIGONE) 1086187.13700000 (BARON) 857953.45580000 (COUENNE) 895953.37880000 (GUROBI) 1086187.13700000 (LINDO) 866341.16060000 (SCIP) 102765.89810000 (SHOT) |
Referencesⓘ | Misener, Ruth and Floudas, C A, Generalized Pooling Problem, 2011. |
Sourceⓘ | generalizedpooling_meyer4.gms from minlp.org model 123 |
Applicationⓘ | Pooling Problem |
Added to libraryⓘ | 25 Sep 2013 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 118 |
#Binary Variablesⓘ | 55 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 28 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 106 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 141 |
#Linear Constraintsⓘ | 126 |
#Quadratic Constraintsⓘ | 15 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 633 |
#Nonlinear Nonzeros in Jacobianⓘ | 156 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 96 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 4 |
Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-02 |
Maximal coefficientⓘ | 3.6676e+04 |
Infeasibility of initial pointⓘ | 300.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 142 17 51 74 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 119 64 55 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 740 584 156 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63; Binary Variables b64,b65,b66,b67,b68,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78 ,b79,b80,b81,b82,b83,b84,b85,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95 ,b96,b97,b98,b99,b100,b101,b102,b103,b104,b105,b106,b107,b108,b109 ,b110,b111,b112,b113,b114,b115,b116,b117,b118; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142; e1.. - 75.0708333333333*x1 - 150.141666666667*x2 - 280.264444444444*x3 - 245.231388888889*x4 - 55.0519444444444*x5 - 125.118055555556*x6 - 260.245555555556*x7 - 215.203055555556*x8 - 30.0283333333333*x9 - 115.108611111111*x10 - 240.226666666667*x11 - 220.207777777778*x12 - 55.0519444444444*x13 - 140.132222222222*x14 - 245.231388888889*x15 - 245.231388888889*x16 - 55.0519444444444*x17 - 40.0377777777778*x18 - 150.141666666667*x19 - 150.141666666667*x20 - 40.0377777777778*x21 - 120.113333333333*x22 - 230.217222222222*x23 - 230.217222222222*x24 - 30.0283333333333*x25 - 60.0566666666667*x26 - 175.165277777778*x27 - 165.155833333333*x28 - 1177.97083333333*x29 - 2975.27555555556*x30 - 1263.05111111111*x31 - 1293.07944444444*x32 - 1182.97555555556*x33 - 1313.09833333333*x34 - 1293.07944444444*x35 - 2975.27555555556*x36 - 3025.32277777778*x37 - 2995.29444444444*x38 - 1313.09833333333*x39 - 1233.02277777778*x40 - 1213.00388888889*x41 - 1293.07944444444*x42 - 1202.99444444444*x43 - 1213.00388888889*x44 - 150.141666666667*x45 - 135.1275*x46 - 100.094444444444*x47 - 90.085*x48 - 40.0377777777778*x49 - 70.0661111111111*x50 - 45.0425*x51 - 9345*b64 - 18690*b65 - 34888*b66 - 30527*b67 - 6853*b68 - 15575*b69 - 32396*b70 - 26789*b71 - 3738*b72 - 14329*b73 - 29904*b74 - 27412*b75 - 6853*b76 - 17444*b77 - 30527*b78 - 30527*b79 - 6853*b80 - 4984*b81 - 18690*b82 - 18690*b83 - 4984*b84 - 14952*b85 - 28658*b86 - 28658*b87 - 3738*b88 - 7476*b89 - 21805*b90 - 20559*b91 - 9345*b92 - 9968*b93 - 19936*b94 - 23674*b95 - 9968*b96 - 26166*b97 - 23674*b98 - 9968*b99 - 16198*b100 - 12460*b101 - 26166*b102 - 16198*b103 - 13706*b104 - 23674*b105 - 12460*b106 - 13706*b107 - 18690*b108 - 16821*b109 - 12460*b110 - 11214*b111 - 4984*b112 - 8722*b113 - 5607*b114 - 13972*b115 - 36676*b116 - 13972*b117 - 13972*b118 + objvar =E= 0; e2.. - x1 - x2 - x3 - x4 - x45 =L= -20; e3.. - x5 - x6 - x7 - x8 - x46 =L= -50; e4.. - x9 - x10 - x11 - x12 - x47 =L= -47.5; e5.. - x13 - x14 - x15 - x16 - x48 =L= -28; e6.. - x17 - x18 - x19 - x20 - x49 =L= -100; e7.. - x21 - x22 - x23 - x24 - x50 =L= -30; e8.. - x25 - x26 - x27 - x28 - x51 =L= -25; e9.. x1 + x2 + x3 + x4 + x45 =L= 20; e10.. x5 + x6 + x7 + x8 + x46 =L= 50; e11.. x9 + x10 + x11 + x12 + x47 =L= 47.5; e12.. x13 + x14 + x15 + x16 + x48 =L= 28; e13.. x17 + x18 + x19 + x20 + x49 =L= 100; e14.. x21 + x22 + x23 + x24 + x50 =L= 30; e15.. x25 + x26 + x27 + x28 + x51 =L= 25; e16.. x29 + x33 + x34 + x35 - 300.5*b115 =L= 0; e17.. x30 + x36 + x37 + x38 - 300.5*b116 =L= 0; e18.. x31 + x39 + x40 + x41 - 300.5*b117 =L= 0; e19.. x32 + x42 + x43 + x44 - 300.5*b118 =L= 0; e20.. - x29 - x30 - x31 - x32 - x45 - x46 - x47 - x48 - x49 - x50 - x51 =L= -300.5; e21.. x29 + x30 + x31 + x32 + x45 + x46 + x47 + x48 + x49 + x50 + x51 =L= 300.5; e22.. x1 + x5 + x9 + x13 + x17 + x21 + x25 - x29 - x33 - x34 - x35 + x36 + x39 + x42 =E= 0; e23.. x2 + x6 + x10 + x14 + x18 + x22 + x26 - x30 + x33 - x36 - x37 - x38 + x40 + x43 =E= 0; e24.. x3 + x7 + x11 + x15 + x19 + x23 + x27 - x31 + x34 + x37 - x39 - x40 - x41 + x44 =E= 0; e25.. x4 + x8 + x12 + x16 + x20 + x24 + x28 - x32 + x35 + x38 + x41 - x42 - x43 - x44 =E= 0; e26.. 0.01*(x55*x36 + x58*x39 + x61*x42) - (x52*x29 + x52*x33 + x52*x34 + x52* x35) + x1 + 8.00000000000001*x5 + 4*x9 + 12*x13 + 5*x17 + 0.5*x21 + 10*x25 =E= 0; e27.. 0.1*(x56*x36 + x59*x39 + x62*x42) - (x53*x29 + x53*x33 + x53*x34 + x53* x35) + 50*x1 + 175*x5 + 8*x9 + 100*x13 + 70*x17 + 10*x21 + 5*x25 =E= 0; e28.. 0.05*(x57*x36 + x60*x39 + x63*x42) - (x54*x29 + x54*x33 + x54*x34 + x54* x35) + 25*x1 + 100*x5 + 5*x9 + 20*x13 + 12.5*x17 + 2.5*x21 + 7.50000000000001*x25 =E= 0; e29.. x52*x33 + x58*x40 + x61*x43 - (x55*x30 + x55*x36 + x55*x37 + x55*x38) + 100*x2 + 800*x6 + 400*x10 + 1200*x14 + 500*x18 + 50*x22 + 1000*x26 =E= 0; e30.. 0.13*(x53*x33 + x59*x40 + x62*x43) - (x56*x30 + x56*x36 + x56*x37 + x56* x38) + 65*x2 + 227.5*x6 + 10.4*x10 + 130*x14 + 91*x18 + 13*x22 + 6.5*x26 =E= 0; e31.. 0.1*(x54*x33 + x60*x40 + x63*x43) - (x57*x30 + x57*x36 + x57*x37 + x57* x38) + 50*x2 + 200*x6 + 10*x10 + 40*x14 + 25*x18 + 5*x22 + 15*x26 =E= 0; e32.. 0.9*(x52*x34 + x55*x37 + x61*x44) - (x58*x31 + x58*x39 + x58*x40 + x58* x41) + 90*x3 + 720*x7 + 360*x11 + 1080*x15 + 450*x19 + 45*x23 + 900*x27 =E= 0; e33.. 0.01*(x53*x34 + x56*x37 + x62*x44) - (x59*x31 + x59*x39 + x59*x40 + x59* x41) + 5*x3 + 17.5*x7 + 0.800000000000001*x11 + 10*x15 + 7.00000000000001*x19 + x23 + 0.5*x27 =E= 0; e34.. x54*x34 + x57*x37 + x63*x44 - (x60*x31 + x60*x39 + x60*x40 + x60*x41) + 500*x3 + 2000*x7 + 100*x11 + 400*x15 + 250*x19 + 50*x23 + 150*x27 =E= 0; e35.. 0.3*(x52*x35 + x55*x38 + x58*x41) - (x61*x32 + x61*x42 + x61*x43 + x61* x44) + 30*x4 + 240*x8 + 120*x12 + 360*x16 + 150*x20 + 15*x24 + 300*x28 =E= 0; e36.. 0.8*(x53*x35 + x56*x38 + x59*x41) - (x62*x32 + x62*x42 + x62*x43 + x62* x44) + 400*x4 + 1400*x8 + 64*x12 + 800*x16 + 560*x20 + 80*x24 + 40*x28 =E= 0; e37.. 0.7*(x54*x35 + x57*x38 + x60*x41) - (x63*x32 + x63*x42 + x63*x43 + x63* x44) + 350*x4 + 1400*x8 + 70*x12 + 280*x16 + 175*x20 + 35*x24 + 105*x28 =E= 0; e38.. x52*x29 + x55*x30 + x58*x31 + x61*x32 - 5*x29 - 5*x30 - 5*x31 - 5*x32 + 95*x45 + 795*x46 + 395*x47 + 1195*x48 + 495*x49 + 45*x50 + 995*x51 =L= 0; e39.. x53*x29 + x56*x30 + x59*x31 + x62*x32 - 5*x29 - 5*x30 - 5*x31 - 5*x32 + 495*x45 + 1745*x46 + 75*x47 + 995*x48 + 695*x49 + 95*x50 + 45*x51 =L= 0; e40.. x54*x29 + x57*x30 + x60*x31 + x63*x32 - 10*x29 - 10*x30 - 10*x31 - 10*x32 + 490*x45 + 1990*x46 + 90*x47 + 390*x48 + 240*x49 + 40*x50 + 140*x51 =L= 0; e41.. x1 - 0.2*b64 =G= 0; e42.. x2 - 0.2*b65 =G= 0; e43.. x3 - 0.2*b66 =G= 0; e44.. x4 - 0.2*b67 =G= 0; e45.. x5 - 0.2*b68 =G= 0; e46.. x6 - 0.2*b69 =G= 0; e47.. x7 - 0.2*b70 =G= 0; e48.. x8 - 0.2*b71 =G= 0; e49.. x9 - 0.2*b72 =G= 0; e50.. x10 - 0.2*b73 =G= 0; e51.. x11 - 0.2*b74 =G= 0; e52.. x12 - 0.2*b75 =G= 0; e53.. x13 - 0.2*b76 =G= 0; e54.. x14 - 0.2*b77 =G= 0; e55.. x15 - 0.2*b78 =G= 0; e56.. x16 - 0.2*b79 =G= 0; e57.. x17 - 0.2*b80 =G= 0; e58.. x18 - 0.2*b81 =G= 0; e59.. x19 - 0.2*b82 =G= 0; e60.. x20 - 0.2*b83 =G= 0; e61.. x21 - 0.2*b84 =G= 0; e62.. x22 - 0.2*b85 =G= 0; e63.. x23 - 0.2*b86 =G= 0; e64.. x24 - 0.2*b87 =G= 0; e65.. x25 - 0.2*b88 =G= 0; e66.. x26 - 0.2*b89 =G= 0; e67.. x27 - 0.2*b90 =G= 0; e68.. x28 - 0.2*b91 =G= 0; e69.. x1 - 20*b64 =L= 0; e70.. x2 - 20*b65 =L= 0; e71.. x3 - 20*b66 =L= 0; e72.. x4 - 20*b67 =L= 0; e73.. x5 - 50*b68 =L= 0; e74.. x6 - 50*b69 =L= 0; e75.. x7 - 50*b70 =L= 0; e76.. x8 - 50*b71 =L= 0; e77.. x9 - 47.5*b72 =L= 0; e78.. x10 - 47.5*b73 =L= 0; e79.. x11 - 47.5*b74 =L= 0; e80.. x12 - 47.5*b75 =L= 0; e81.. x13 - 28*b76 =L= 0; e82.. x14 - 28*b77 =L= 0; e83.. x15 - 28*b78 =L= 0; e84.. x16 - 28*b79 =L= 0; e85.. x17 - 100*b80 =L= 0; e86.. x18 - 100*b81 =L= 0; e87.. x19 - 100*b82 =L= 0; e88.. x20 - 100*b83 =L= 0; e89.. x21 - 30*b84 =L= 0; e90.. x22 - 30*b85 =L= 0; e91.. x23 - 30*b86 =L= 0; e92.. x24 - 30*b87 =L= 0; e93.. x25 - 25*b88 =L= 0; e94.. x26 - 25*b89 =L= 0; e95.. x27 - 25*b90 =L= 0; e96.. x28 - 25*b91 =L= 0; e97.. x29 - 0.2*b92 =G= 0; e98.. x30 - 0.2*b93 =G= 0; e99.. x31 - 0.2*b94 =G= 0; e100.. x32 - 0.2*b95 =G= 0; e101.. x29 - 300.5*b92 =L= 0; e102.. x30 - 300.5*b93 =L= 0; e103.. x31 - 300.5*b94 =L= 0; e104.. x32 - 300.5*b95 =L= 0; e105.. x45 - 0.2*b108 =G= 0; e106.. x46 - 0.2*b109 =G= 0; e107.. x47 - 0.2*b110 =G= 0; e108.. x48 - 0.2*b111 =G= 0; e109.. x49 - 0.2*b112 =G= 0; e110.. x50 - 0.2*b113 =G= 0; e111.. x51 - 0.2*b114 =G= 0; e112.. x45 - 20*b108 =L= 0; e113.. x46 - 50*b109 =L= 0; e114.. x47 - 47.5*b110 =L= 0; e115.. x48 - 28*b111 =L= 0; e116.. x49 - 100*b112 =L= 0; e117.. x50 - 30*b113 =L= 0; e118.. x51 - 25*b114 =L= 0; e119.. x36 - 0.2*b99 =G= 0; e120.. x39 - 0.2*b102 =G= 0; e121.. x42 - 0.2*b105 =G= 0; e122.. x33 - 0.2*b96 =G= 0; e123.. x40 - 0.2*b103 =G= 0; e124.. x43 - 0.2*b106 =G= 0; e125.. x34 - 0.2*b97 =G= 0; e126.. x37 - 0.2*b100 =G= 0; e127.. x44 - 0.2*b107 =G= 0; e128.. x35 - 0.2*b98 =G= 0; e129.. x38 - 0.2*b101 =G= 0; e130.. x41 - 0.2*b104 =G= 0; e131.. x36 - 300.5*b99 =L= 0; e132.. x39 - 300.5*b102 =L= 0; e133.. x42 - 300.5*b105 =L= 0; e134.. x33 - 300.5*b96 =L= 0; e135.. x40 - 300.5*b103 =L= 0; e136.. x43 - 300.5*b106 =L= 0; e137.. x34 - 300.5*b97 =L= 0; e138.. x37 - 300.5*b100 =L= 0; e139.. x44 - 300.5*b107 =L= 0; e140.. x35 - 300.5*b98 =L= 0; e141.. x38 - 300.5*b101 =L= 0; e142.. x41 - 300.5*b104 =L= 0; * set non-default bounds x1.up = 20; x2.up = 20; x3.up = 20; x4.up = 20; x5.up = 50; x6.up = 50; x7.up = 50; x8.up = 50; x9.up = 47.5; x10.up = 47.5; x11.up = 47.5; x12.up = 47.5; x13.up = 28; x14.up = 28; x15.up = 28; x16.up = 28; x17.up = 100; x18.up = 100; x19.up = 100; x20.up = 100; x21.up = 30; x22.up = 30; x23.up = 30; x24.up = 30; x25.up = 25; x26.up = 25; x27.up = 25; x28.up = 25; x29.up = 300.5; x30.up = 300.5; x31.up = 300.5; x32.up = 300.5; x33.up = 300.5; x34.up = 300.5; x35.up = 300.5; x36.up = 300.5; x37.up = 300.5; x38.up = 300.5; x39.up = 300.5; x40.up = 300.5; x41.up = 300.5; x42.up = 300.5; x43.up = 300.5; x44.up = 300.5; x45.up = 20; x46.up = 50; x47.up = 47.5; x48.up = 28; x49.up = 100; x50.up = 30; x51.up = 25; x52.up = 12; x53.up = 175; x54.up = 100; x55.up = 1200; x56.up = 227.5; x57.up = 200; x58.up = 1080; x59.up = 17.5; x60.up = 2000; x61.up = 360; x62.up = 1400; x63.up = 1400; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f