MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance graphpart_2g-1010-0824
This is a quadratic model for the graph partitioning problem. The graphs are taken from the publication of Ghaddar et al. We used 3 parts of the partition to generate the quadratic instances. The model assigns each node to one of the three parts. Hence, the model is symmetric, which should probably be used in a solution algorithm.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -7024864.00700000 (ANTIGONE) -7024864.00000000 (BARON) -7024864.00000000 (COUENNE) -7024864.00000000 (CPLEX) -7024864.00000000 (GUROBI) -7024864.00000000 (LINDO) -7024864.00000000 (SCIP) -7024864.00000000 (SHOT) |
Referencesⓘ | Ghaddar, Bissan, Anjos, Miguel F, and Liers, Frauke, A Branch-and-Cut Algorithm based on Semidefinite Programming for the Minimum k-Partition Problem, Annals of Operations Research, 188:1, 2011, 155-174. |
Sourceⓘ | POLIP instance graphpart/data_2g_1010_824.dimacs |
Applicationⓘ | Graph Partitioning |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | BQP |
#Variablesⓘ | 300 |
#Binary Variablesⓘ | 300 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 300 |
#Nonlinear Binary Variablesⓘ | 300 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 300 |
#Nonlinear Nonzeros in Objectiveⓘ | 300 |
#Constraintsⓘ | 100 |
#Linear Constraintsⓘ | 100 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 300 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1200 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 100 |
Maximal blocksize in Hessian of Lagrangianⓘ | 100 |
Average blocksize in Hessian of Lagrangianⓘ | 100.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.6843e+05 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 101 101 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 301 1 300 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 601 301 300 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142 ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155 ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168 ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181 ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194 ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207 ,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220 ,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233 ,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246 ,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259 ,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272 ,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285 ,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298 ,b299,b300,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51 ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68 ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101 ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114 ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127 ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140 ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153 ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166 ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179 ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192 ,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205 ,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218 ,b219,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231 ,b232,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244 ,b245,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257 ,b258,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270 ,b271,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283 ,b284,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296 ,b297,b298,b299,b300; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101; e1.. b1 + b2 + b3 =E= 1; e2.. b4 + b5 + b6 =E= 1; e3.. b7 + b8 + b9 =E= 1; e4.. b10 + b11 + b12 =E= 1; e5.. b13 + b14 + b15 =E= 1; e6.. b16 + b17 + b18 =E= 1; e7.. b19 + b20 + b21 =E= 1; e8.. b22 + b23 + b24 =E= 1; e9.. b25 + b26 + b27 =E= 1; e10.. b28 + b29 + b30 =E= 1; e11.. b31 + b32 + b33 =E= 1; e12.. b34 + b35 + b36 =E= 1; e13.. b37 + b38 + b39 =E= 1; e14.. b40 + b41 + b42 =E= 1; e15.. b43 + b44 + b45 =E= 1; e16.. b46 + b47 + b48 =E= 1; e17.. b49 + b50 + b51 =E= 1; e18.. b52 + b53 + b54 =E= 1; e19.. b55 + b56 + b57 =E= 1; e20.. b58 + b59 + b60 =E= 1; e21.. b61 + b62 + b63 =E= 1; e22.. b64 + b65 + b66 =E= 1; e23.. b67 + b68 + b69 =E= 1; e24.. b70 + b71 + b72 =E= 1; e25.. b73 + b74 + b75 =E= 1; e26.. b76 + b77 + b78 =E= 1; e27.. b79 + b80 + b81 =E= 1; e28.. b82 + b83 + b84 =E= 1; e29.. b85 + b86 + b87 =E= 1; e30.. b88 + b89 + b90 =E= 1; e31.. b91 + b92 + b93 =E= 1; e32.. b94 + b95 + b96 =E= 1; e33.. b97 + b98 + b99 =E= 1; e34.. b100 + b101 + b102 =E= 1; e35.. b103 + b104 + b105 =E= 1; e36.. b106 + b107 + b108 =E= 1; e37.. b109 + b110 + b111 =E= 1; e38.. b112 + b113 + b114 =E= 1; e39.. b115 + b116 + b117 =E= 1; e40.. b118 + b119 + b120 =E= 1; e41.. b121 + b122 + b123 =E= 1; e42.. b124 + b125 + b126 =E= 1; e43.. b127 + b128 + b129 =E= 1; e44.. b130 + b131 + b132 =E= 1; e45.. b133 + b134 + b135 =E= 1; e46.. b136 + b137 + b138 =E= 1; e47.. b139 + b140 + b141 =E= 1; e48.. b142 + b143 + b144 =E= 1; e49.. b145 + b146 + b147 =E= 1; e50.. b148 + b149 + b150 =E= 1; e51.. b151 + b152 + b153 =E= 1; e52.. b154 + b155 + b156 =E= 1; e53.. b157 + b158 + b159 =E= 1; e54.. b160 + b161 + b162 =E= 1; e55.. b163 + b164 + b165 =E= 1; e56.. b166 + b167 + b168 =E= 1; e57.. b169 + b170 + b171 =E= 1; e58.. b172 + b173 + b174 =E= 1; e59.. b175 + b176 + b177 =E= 1; e60.. b178 + b179 + b180 =E= 1; e61.. b181 + b182 + b183 =E= 1; e62.. b184 + b185 + b186 =E= 1; e63.. b187 + b188 + b189 =E= 1; e64.. b190 + b191 + b192 =E= 1; e65.. b193 + b194 + b195 =E= 1; e66.. b196 + b197 + b198 =E= 1; e67.. b199 + b200 + b201 =E= 1; e68.. b202 + b203 + b204 =E= 1; e69.. b205 + b206 + b207 =E= 1; e70.. b208 + b209 + b210 =E= 1; e71.. b211 + b212 + b213 =E= 1; e72.. b214 + b215 + b216 =E= 1; e73.. b217 + b218 + b219 =E= 1; e74.. b220 + b221 + b222 =E= 1; e75.. b223 + b224 + b225 =E= 1; e76.. b226 + b227 + b228 =E= 1; e77.. b229 + b230 + b231 =E= 1; e78.. b232 + b233 + b234 =E= 1; e79.. b235 + b236 + b237 =E= 1; e80.. b238 + b239 + b240 =E= 1; e81.. b241 + b242 + b243 =E= 1; e82.. b244 + b245 + b246 =E= 1; e83.. b247 + b248 + b249 =E= 1; e84.. b250 + b251 + b252 =E= 1; e85.. b253 + b254 + b255 =E= 1; e86.. b256 + b257 + b258 =E= 1; e87.. b259 + b260 + b261 =E= 1; e88.. b262 + b263 + b264 =E= 1; e89.. b265 + b266 + b267 =E= 1; e90.. b268 + b269 + b270 =E= 1; e91.. b271 + b272 + b273 =E= 1; e92.. b274 + b275 + b276 =E= 1; e93.. b277 + b278 + b279 =E= 1; e94.. b280 + b281 + b282 =E= 1; e95.. b283 + b284 + b285 =E= 1; e96.. b286 + b287 + b288 =E= 1; e97.. b289 + b290 + b291 =E= 1; e98.. b292 + b293 + b294 =E= 1; e99.. b295 + b296 + b297 =E= 1; e100.. b298 + b299 + b300 =E= 1; e101.. (-140500*b1*b4) - 6168*b1*b28 + 69805*b1*b31 + 99537*b1*b271 - 140500*b2 *b5 - 6168*b2*b29 + 69805*b2*b32 + 99537*b2*b272 - 140500*b3*b6 - 6168* b3*b30 + 69805*b3*b33 + 99537*b3*b273 + 243172*b4*b7 - 106973*b4*b34 - 75892*b4*b274 + 243172*b5*b8 - 106973*b5*b35 - 75892*b5*b275 + 243172*b6 *b9 - 106973*b6*b36 - 75892*b6*b276 + 57380*b7*b10 - 161384*b7*b37 - 31457*b7*b277 + 57380*b8*b11 - 161384*b8*b38 - 31457*b8*b278 + 57380*b9* b12 - 161384*b9*b39 - 31457*b9*b279 + 47389*b10*b13 - 130709*b10*b40 - 118141*b10*b280 + 47389*b11*b14 - 130709*b11*b41 - 118141*b11*b281 + 47389*b12*b15 - 130709*b12*b42 - 118141*b12*b282 + 8824*b13*b16 + 59639* b13*b43 + 77772*b13*b283 + 8824*b14*b17 + 59639*b14*b44 + 77772*b14*b284 + 8824*b15*b18 + 59639*b15*b45 + 77772*b15*b285 + 44460*b16*b19 + 16922 *b16*b46 + 101315*b16*b286 + 44460*b17*b20 + 16922*b17*b47 + 101315*b17* b287 + 44460*b18*b21 + 16922*b18*b48 + 101315*b18*b288 - 16373*b19*b22 - 17220*b19*b49 - 22319*b19*b289 - 16373*b20*b23 - 17220*b20*b50 - 22319*b20*b290 - 16373*b21*b24 - 17220*b21*b51 - 22319*b21*b291 + 142391 *b22*b25 - 32331*b22*b52 + 205481*b22*b292 + 142391*b23*b26 - 32331*b23* b53 + 205481*b23*b293 + 142391*b24*b27 - 32331*b24*b54 + 205481*b24*b294 - 67473*b25*b28 - 38478*b25*b55 + 12209*b25*b295 - 67473*b26*b29 - 38478*b26*b56 + 12209*b26*b296 - 67473*b27*b30 - 38478*b27*b57 + 12209* b27*b297 + 41199*b28*b58 + 88687*b28*b298 + 41199*b29*b59 + 88687*b29* b299 + 41199*b30*b60 + 88687*b30*b300 - 103914*b31*b34 - 78967*b31*b58 - 35106*b31*b61 - 103914*b32*b35 - 78967*b32*b59 - 35106*b32*b62 - 103914*b33*b36 - 78967*b33*b60 - 35106*b33*b63 + 126330*b34*b37 + 63341* b34*b64 + 126330*b35*b38 + 63341*b35*b65 + 126330*b36*b39 + 63341*b36* b66 + 179120*b37*b40 - 148919*b37*b67 + 179120*b38*b41 - 148919*b38*b68 + 179120*b39*b42 - 148919*b39*b69 - 79*b40*b43 + 57817*b40*b70 - 79*b41 *b44 + 57817*b41*b71 - 79*b42*b45 + 57817*b42*b72 - 145504*b43*b46 - 25404*b43*b73 - 145504*b44*b47 - 25404*b44*b74 - 145504*b45*b48 - 25404* b45*b75 + 2643*b46*b49 - 94271*b46*b76 + 2643*b47*b50 - 94271*b47*b77 + 2643*b48*b51 - 94271*b48*b78 - 3237*b49*b52 - 113326*b49*b79 - 3237*b50* b53 - 113326*b50*b80 - 3237*b51*b54 - 113326*b51*b81 - 34448*b52*b55 + 70947*b52*b82 - 34448*b53*b56 + 70947*b53*b83 - 34448*b54*b57 + 70947* b54*b84 + 87914*b55*b58 - 194219*b55*b85 + 87914*b56*b59 - 194219*b56* b86 + 87914*b57*b60 - 194219*b57*b87 + 100179*b58*b88 + 100179*b59*b89 + 100179*b60*b90 + 113386*b61*b64 + 146383*b61*b88 + 95534*b61*b91 + 113386*b62*b65 + 146383*b62*b89 + 95534*b62*b92 + 113386*b63*b66 + 146383*b63*b90 + 95534*b63*b93 - 216283*b64*b67 + 132661*b64*b94 - 216283*b65*b68 + 132661*b65*b95 - 216283*b66*b69 + 132661*b66*b96 + 45184*b67*b70 - 161057*b67*b97 + 45184*b68*b71 - 161057*b68*b98 + 45184* b69*b72 - 161057*b69*b99 + 107039*b70*b73 - 41532*b70*b100 + 107039*b71* b74 - 41532*b71*b101 + 107039*b72*b75 - 41532*b72*b102 - 52792*b73*b76 - 16199*b73*b103 - 52792*b74*b77 - 16199*b74*b104 - 52792*b75*b78 - 16199*b75*b105 - 155271*b76*b79 + 119259*b76*b106 - 155271*b77*b80 + 119259*b77*b107 - 155271*b78*b81 + 119259*b78*b108 - 110981*b79*b82 - 78323*b79*b109 - 110981*b80*b83 - 78323*b80*b110 - 110981*b81*b84 - 78323*b81*b111 + 158177*b82*b85 - 43898*b82*b112 + 158177*b83*b86 - 43898*b83*b113 + 158177*b84*b87 - 43898*b84*b114 - 114367*b85*b88 - 213090*b85*b115 - 114367*b86*b89 - 213090*b86*b116 - 114367*b87*b90 - 213090*b87*b117 + 217366*b88*b118 + 217366*b89*b119 + 217366*b90*b120 + 51648*b91*b94 + 54470*b91*b118 + 103741*b91*b121 + 51648*b92*b95 + 54470 *b92*b119 + 103741*b92*b122 + 51648*b93*b96 + 54470*b93*b120 + 103741* b93*b123 - 103486*b94*b97 - 25206*b94*b124 - 103486*b95*b98 - 25206*b95* b125 - 103486*b96*b99 - 25206*b96*b126 - 121719*b97*b100 - 189420*b97* b127 - 121719*b98*b101 - 189420*b98*b128 - 121719*b99*b102 - 189420*b99* b129 - 30445*b100*b103 - 31937*b100*b130 - 30445*b101*b104 - 31937*b101* b131 - 30445*b102*b105 - 31937*b102*b132 - 50463*b103*b106 - 122279*b103 *b133 - 50463*b104*b107 - 122279*b104*b134 - 50463*b105*b108 - 122279* b105*b135 - 55487*b106*b109 - 4137*b106*b136 - 55487*b107*b110 - 4137* b107*b137 - 55487*b108*b111 - 4137*b108*b138 + 143431*b109*b112 - 44217* b109*b139 + 143431*b110*b113 - 44217*b110*b140 + 143431*b111*b114 - 44217*b111*b141 + 52272*b112*b115 - 45507*b112*b142 + 52272*b113*b116 - 45507*b113*b143 + 52272*b114*b117 - 45507*b114*b144 - 111550*b115*b118 - 58115*b115*b145 - 111550*b116*b119 - 58115*b116*b146 - 111550*b117* b120 - 58115*b117*b147 + 132392*b118*b148 + 132392*b119*b149 + 132392* b120*b150 + 120695*b121*b124 + 44324*b121*b148 - 93232*b121*b151 + 120695*b122*b125 + 44324*b122*b149 - 93232*b122*b152 + 120695*b123*b126 + 44324*b123*b150 - 93232*b123*b153 + 71125*b124*b127 + 71545*b124*b154 + 71125*b125*b128 + 71545*b125*b155 + 71125*b126*b129 + 71545*b126*b156 + 61420*b127*b130 - 75807*b127*b157 + 61420*b128*b131 - 75807*b128*b158 + 61420*b129*b132 - 75807*b129*b159 + 2350*b130*b133 - 50108*b130*b160 + 2350*b131*b134 - 50108*b131*b161 + 2350*b132*b135 - 50108*b132*b162 - 79469*b133*b136 + 162799*b133*b163 - 79469*b134*b137 + 162799*b134* b164 - 79469*b135*b138 + 162799*b135*b165 - 28158*b136*b139 + 108362* b136*b166 - 28158*b137*b140 + 108362*b137*b167 - 28158*b138*b141 + 108362*b138*b168 + 37422*b139*b142 - 155036*b139*b169 + 37422*b140*b143 - 155036*b140*b170 + 37422*b141*b144 - 155036*b141*b171 - 4442*b142* b145 + 57204*b142*b172 - 4442*b143*b146 + 57204*b143*b173 - 4442*b144* b147 + 57204*b144*b174 - 4297*b145*b148 - 80716*b145*b175 - 4297*b146* b149 - 80716*b146*b176 - 4297*b147*b150 - 80716*b147*b177 + 47830*b148* b178 + 47830*b149*b179 + 47830*b150*b180 + 63143*b151*b154 - 85053*b151* b178 - 81899*b151*b181 + 63143*b152*b155 - 85053*b152*b179 - 81899*b152* b182 + 63143*b153*b156 - 85053*b153*b180 - 81899*b153*b183 + 94887*b154* b157 - 93735*b154*b184 + 94887*b155*b158 - 93735*b155*b185 + 94887*b156* b159 - 93735*b156*b186 + 31709*b157*b160 + 37028*b157*b187 + 31709*b158* b161 + 37028*b158*b188 + 31709*b159*b162 + 37028*b159*b189 + 22317*b160* b163 + 221122*b160*b190 + 22317*b161*b164 + 221122*b161*b191 + 22317* b162*b165 + 221122*b162*b192 - 47890*b163*b166 - 24565*b163*b193 - 47890 *b164*b167 - 24565*b164*b194 - 47890*b165*b168 - 24565*b165*b195 + 25735 *b166*b169 + 92913*b166*b196 + 25735*b167*b170 + 92913*b167*b197 + 25735 *b168*b171 + 92913*b168*b198 + 82226*b169*b172 - 46424*b169*b199 + 82226 *b170*b173 - 46424*b170*b200 + 82226*b171*b174 - 46424*b171*b201 + 116524*b172*b175 - 59183*b172*b202 + 116524*b173*b176 - 59183*b173*b203 + 116524*b174*b177 - 59183*b174*b204 + 10300*b175*b178 - 12844*b175* b205 + 10300*b176*b179 - 12844*b176*b206 + 10300*b177*b180 - 12844*b177* b207 - 51909*b178*b208 - 51909*b179*b209 - 51909*b180*b210 - 120463*b181 *b184 + 110062*b181*b208 + 58801*b181*b211 - 120463*b182*b185 + 110062* b182*b209 + 58801*b182*b212 - 120463*b183*b186 + 110062*b183*b210 + 58801*b183*b213 - 108142*b184*b187 - 210930*b184*b214 - 108142*b185*b188 - 210930*b185*b215 - 108142*b186*b189 - 210930*b186*b216 + 145601*b187* b190 + 104550*b187*b217 + 145601*b188*b191 + 104550*b188*b218 + 145601* b189*b192 + 104550*b189*b219 + 231665*b190*b193 + 51705*b190*b220 + 231665*b191*b194 + 51705*b191*b221 + 231665*b192*b195 + 51705*b192*b222 - 49380*b193*b196 + 21233*b193*b223 - 49380*b194*b197 + 21233*b194*b224 - 49380*b195*b198 + 21233*b195*b225 + 61670*b196*b199 - 101100*b196* b226 + 61670*b197*b200 - 101100*b197*b227 + 61670*b198*b201 - 101100* b198*b228 + 66074*b199*b202 - 103726*b199*b229 + 66074*b200*b203 - 103726*b200*b230 + 66074*b201*b204 - 103726*b201*b231 + 23275*b202*b205 - 239558*b202*b232 + 23275*b203*b206 - 239558*b203*b233 + 23275*b204* b207 - 239558*b204*b234 - 144999*b205*b208 + 30889*b205*b235 - 144999* b206*b209 + 30889*b206*b236 - 144999*b207*b210 + 30889*b207*b237 - 65255 *b208*b238 - 65255*b209*b239 - 65255*b210*b240 - 208953*b211*b214 + 11477*b211*b238 + 268429*b211*b241 - 208953*b212*b215 + 11477*b212*b239 + 268429*b212*b242 - 208953*b213*b216 + 11477*b213*b240 + 268429*b213* b243 + 26984*b214*b217 - 170553*b214*b244 + 26984*b215*b218 - 170553* b215*b245 + 26984*b216*b219 - 170553*b216*b246 + 69156*b217*b220 + 44984 *b217*b247 + 69156*b218*b221 + 44984*b218*b248 + 69156*b219*b222 + 44984 *b219*b249 - 23255*b220*b223 - 5961*b220*b250 - 23255*b221*b224 - 5961* b221*b251 - 23255*b222*b225 - 5961*b222*b252 + 71643*b223*b226 + 57314* b223*b253 + 71643*b224*b227 + 57314*b224*b254 + 71643*b225*b228 + 57314* b225*b255 + 18626*b226*b229 + 243235*b226*b256 + 18626*b227*b230 + 243235*b227*b257 + 18626*b228*b231 + 243235*b228*b258 - 32740*b229*b232 - 41971*b229*b259 - 32740*b230*b233 - 41971*b230*b260 - 32740*b231*b234 - 41971*b231*b261 + 59354*b232*b235 + 63438*b232*b262 + 59354*b233*b236 + 63438*b233*b263 + 59354*b234*b237 + 63438*b234*b264 + 2745*b235*b238 + 1963*b235*b265 + 2745*b236*b239 + 1963*b236*b266 + 2745*b237*b240 + 1963*b237*b267 + 19196*b238*b268 + 19196*b239*b269 + 19196*b240*b270 + 29280*b241*b244 + 9212*b241*b268 + 152008*b241*b271 + 29280*b242*b245 + 9212*b242*b269 + 152008*b242*b272 + 29280*b243*b246 + 9212*b243*b270 + 152008*b243*b273 + 37618*b244*b247 + 6449*b244*b274 + 37618*b245*b248 + 6449*b245*b275 + 37618*b246*b249 + 6449*b246*b276 + 101612*b247*b250 - 104102*b247*b277 + 101612*b248*b251 - 104102*b248*b278 + 101612*b249* b252 - 104102*b249*b279 + 33724*b250*b253 + 126817*b250*b280 + 33724* b251*b254 + 126817*b251*b281 + 33724*b252*b255 + 126817*b252*b282 + 72754*b253*b256 - 17622*b253*b283 + 72754*b254*b257 - 17622*b254*b284 + 72754*b255*b258 - 17622*b255*b285 + 73668*b256*b259 + 161048*b256*b286 + 73668*b257*b260 + 161048*b257*b287 + 73668*b258*b261 + 161048*b258* b288 - 55290*b259*b262 + 69537*b259*b289 - 55290*b260*b263 + 69537*b260* b290 - 55290*b261*b264 + 69537*b261*b291 - 142640*b262*b265 + 50161*b262 *b292 - 142640*b263*b266 + 50161*b263*b293 - 142640*b264*b267 + 50161* b264*b294 + 115122*b265*b268 + 209308*b265*b295 + 115122*b266*b269 + 209308*b266*b296 + 115122*b267*b270 + 209308*b267*b297 - 89633*b268*b298 - 89633*b269*b299 - 89633*b270*b300 + 85472*b271*b274 - 65488*b271*b298 + 85472*b272*b275 - 65488*b272*b299 + 85472*b273*b276 - 65488*b273*b300 - 97644*b274*b277 - 97644*b275*b278 - 97644*b276*b279 - 22383*b277*b280 - 22383*b278*b281 - 22383*b279*b282 + 39505*b280*b283 + 39505*b281*b284 + 39505*b282*b285 - 26866*b283*b286 - 26866*b284*b287 - 26866*b285*b288 - 104695*b286*b289 - 104695*b287*b290 - 104695*b288*b291 - 118676*b289* b292 - 118676*b290*b293 - 118676*b291*b294 - 80157*b292*b295 - 80157* b293*b296 - 80157*b294*b297 - 29119*b295*b298 - 29119*b296*b299 - 29119* b297*b300 - objvar =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f