MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance gsg_0001

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
2378.16051300 p1 ( gdx sol )
(infeas: 1e-12)
Other points (infeas > 1e-08)  
Dual Bounds
2335.69947600 (ANTIGONE)
2378.16050800 (BARON)
2378.16046000 (COUENNE)
2378.16051200 (LINDO)
2377.97541200 (OCTERACT)
2378.16049100 (SCIP)
0.00000000 (SHOT)
Source GAMS Software GmbH Client Model
Added to library 11 Dec 2003
Problem type NLP
#Variables 78
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 44
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 112
#Linear Constraints 111
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 1
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 369
#Nonlinear Nonzeros in Jacobian 44
#Nonzeros in (Upper-Left) Hessian of Lagrangian 66
#Nonzeros in Diagonal of Hessian of Lagrangian 22
#Blocks in Hessian of Lagrangian 22
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 7.6045e-03
Maximal coefficient 1.3000e+02
Infeasibility of initial point 509.4
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        112       41       41       30        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         78       78        0        0        0        0        0        0
*  FX      5
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        369      325       44        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,objvar;

Positive Variables  x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x68
          ,x69,x70,x71,x72,x73,x74,x75,x76,x77;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112;


e1..    x1 + x12 + x23 =G= 12.735;

e2..    x2 + x13 + x24 =G= 18.523;

e3..    x3 + x14 + x25 =G= 24.42;

e4..    x4 + x15 + x26 =G= 30.729;

e5..    x5 + x16 + x27 =G= 41.698;

e6..    x6 + x17 + x28 =G= 52.802;

e7..    x7 + x18 + x29 =G= 65.155;

e8..    x8 + x19 + x30 =G= 81.675;

e9..    x9 + x20 + x31 =G= 98.667;

e10..    x10 + x21 + x32 =G= 115.501;

e11..    x11 + x22 + x33 =G= 133.561;

e12..  - 0.744093914896725*x1 + x2 =G= 0;

e13..  - 0.744093914896725*x2 + x3 =G= 0;

e14..  - 0.744093914896725*x3 + x4 =G= 0;

e15..  - 0.744093914896725*x4 + x5 =G= 0;

e16..  - 0.744093914896725*x5 + x6 =G= 0;

e17..  - 0.744093914896725*x6 + x7 =G= 0;

e18..  - 0.744093914896725*x7 + x8 =G= 0;

e19..  - 0.744093914896725*x8 + x9 =G= 0;

e20..  - 0.744093914896725*x9 + x10 =G= 0;

e21..  - 0.744093914896725*x10 + x11 =G= 0;

e22..  - 0.744093914896725*x12 + x13 =G= 0;

e23..  - 0.744093914896725*x13 + x14 =G= 0;

e24..  - 0.744093914896725*x14 + x15 =G= 0;

e25..  - 0.744093914896725*x15 + x16 =G= 0;

e26..  - 0.744093914896725*x16 + x17 =G= 0;

e27..  - 0.744093914896725*x17 + x18 =G= 0;

e28..  - 0.744093914896725*x18 + x19 =G= 0;

e29..  - 0.744093914896725*x19 + x20 =G= 0;

e30..  - 0.744093914896725*x20 + x21 =G= 0;

e31..  - 0.744093914896725*x21 + x22 =G= 0;

e32..  - 0.744093914896725*x23 + x24 =G= 0;

e33..  - 0.744093914896725*x24 + x25 =G= 0;

e34..  - 0.744093914896725*x25 + x26 =G= 0;

e35..  - 0.744093914896725*x26 + x27 =G= 0;

e36..  - 0.744093914896725*x27 + x28 =G= 0;

e37..  - 0.744093914896725*x28 + x29 =G= 0;

e38..  - 0.744093914896725*x29 + x30 =G= 0;

e39..  - 0.744093914896725*x30 + x31 =G= 0;

e40..  - 0.744093914896725*x31 + x32 =G= 0;

e41..  - 0.744093914896725*x32 + x33 =G= 0;

e42..  - 4*x1 + x2 =L= 0.18523;

e43..  - 4*x2 + x3 =L= 0.2442;

e44..  - 4*x3 + x4 =L= 0.30729;

e45..  - 4*x4 + x5 =L= 0.41698;

e46..  - 4*x5 + x6 =L= 0.52802;

e47..  - 4*x6 + x7 =L= 0.65155;

e48..  - 4*x7 + x8 =L= 0.81675;

e49..  - 4*x8 + x9 =L= 0.98667;

e50..  - 4*x9 + x10 =L= 1.15501;

e51..  - 4*x10 + x11 =L= 1.33561;

e52..  - 4*x12 + x13 =L= 0.18523;

e53..  - 4*x13 + x14 =L= 0.2442;

e54..  - 4*x14 + x15 =L= 0.30729;

e55..  - 4*x15 + x16 =L= 0.41698;

e56..  - 4*x16 + x17 =L= 0.52802;

e57..  - 4*x17 + x18 =L= 0.65155;

e58..  - 4*x18 + x19 =L= 0.81675;

e59..  - 4*x19 + x20 =L= 0.98667;

e60..  - 4*x20 + x21 =L= 1.15501;

e61..  - 4*x21 + x22 =L= 1.33561;

e62..  - 4*x23 + x24 =L= 0.18523;

e63..  - 4*x24 + x25 =L= 0.2442;

e64..  - 4*x25 + x26 =L= 0.30729;

e65..  - 4*x26 + x27 =L= 0.41698;

e66..  - 4*x27 + x28 =L= 0.52802;

e67..  - 4*x28 + x29 =L= 0.65155;

e68..  - 4*x29 + x30 =L= 0.81675;

e69..  - 4*x30 + x31 =L= 0.98667;

e70..  - 4*x31 + x32 =L= 1.15501;

e71..  - 4*x32 + x33 =L= 1.33561;

e72..  - 5*x1 - 5*x2 - x34 + x35 =E= 0;

e73..  - 5*x2 - 5*x3 - x35 + x36 =E= 0;

e74..  - 5*x3 - 5*x4 - x36 + x37 =E= 0;

e75..  - 5*x4 - 5*x5 - x37 + x38 =E= 0;

e76..  - 5*x5 - 5*x6 - x38 + x39 =E= 0;

e77..  - 5*x6 - 5*x7 - x39 + x40 =E= 0;

e78..  - 5*x7 - 5*x8 - x40 + x41 =E= 0;

e79..  - 5*x8 - 5*x9 - x41 + x42 =E= 0;

e80..  - 5*x9 - 5*x10 - x42 + x43 =E= 0;

e81..  - 5*x10 - 5*x11 - x43 + x44 =E= 0;

e82..  - 5*x12 - 5*x13 - x45 + x46 =E= 0;

e83..  - 5*x13 - 5*x14 - x46 + x47 =E= 0;

e84..  - 5*x14 - 5*x15 - x47 + x48 =E= 0;

e85..  - 5*x15 - 5*x16 - x48 + x49 =E= 0;

e86..  - 5*x16 - 5*x17 - x49 + x50 =E= 0;

e87..  - 5*x17 - 5*x18 - x50 + x51 =E= 0;

e88..  - 5*x18 - 5*x19 - x51 + x52 =E= 0;

e89..  - 5*x19 - 5*x20 - x52 + x53 =E= 0;

e90..  - 5*x20 - 5*x21 - x53 + x54 =E= 0;

e91..  - 5*x21 - 5*x22 - x54 + x55 =E= 0;

e92..  - 5*x23 - 5*x24 - x56 + x57 =E= 0;

e93..  - 5*x24 - 5*x25 - x57 + x58 =E= 0;

e94..  - 5*x25 - 5*x26 - x58 + x59 =E= 0;

e95..  - 5*x26 - 5*x27 - x59 + x60 =E= 0;

e96..  - 5*x27 - 5*x28 - x60 + x61 =E= 0;

e97..  - 5*x28 - 5*x29 - x61 + x62 =E= 0;

e98..  - 5*x29 - 5*x30 - x62 + x63 =E= 0;

e99..  - 5*x30 - 5*x31 - x63 + x64 =E= 0;

e100..  - 5*x31 - 5*x32 - x64 + x65 =E= 0;

e101..  - 5*x32 - 5*x33 - x65 + x66 =E= 0;

e102..  - 0.850412249705536*x1 - 0.850412249705536*x2 - x67 + x68 =E= 0;

e103..  - 0.850412249705536*x2 - 0.850412249705536*x3 - x68 + x69 =E= 0;

e104..  - 0.850412249705536*x3 - 0.850412249705536*x4 - x69 + x70 =E= 0;

e105..  - 0.850412249705536*x4 - 0.850412249705536*x5 - x70 + x71 =E= 0;

e106..  - 0.850412249705536*x5 - 0.850412249705536*x6 - x71 + x72 =E= 0;

e107..  - 0.850412249705536*x6 - 0.850412249705536*x7 - x72 + x73 =E= 0;

e108..  - 0.850412249705536*x7 - 0.850412249705536*x8 - x73 + x74 =E= 0;

e109..  - 0.850412249705536*x8 - 0.850412249705536*x9 - x74 + x75 =E= 0;

e110..  - 0.850412249705536*x9 - 0.850412249705536*x10 - x75 + x76 =E= 0;

e111..  - 0.850412249705536*x10 - 0.850412249705536*x11 - x76 + x77 =E= 0;

e112.. -(15*(5*x45)**(-0.1)*x12 + 130*(100*x56)**(-0.3)*x23 + 30*x12 + 30*x23
        + 0.613913253540759*(15*(5*x46)**(-0.1)*x13 + 130*(100*x57)**(-0.3)*x24
        + 30*x13 + 30*x24) + 0.376889482873*(15*(5*x47)**(-0.1)*x14 + 130*(100*
       x58)**(-0.3)*x25 + 30*x14 + 30*x25) + 0.231377448655858*(15*(5*x48)**(-
       0.1)*x15 + 130*(100*x59)**(-0.3)*x26 + 30*x15 + 30*x26) + 
       0.142045682300278*(15*(5*x49)**(-0.1)*x16 + 130*(100*x60)**(-0.3)*x27 + 
       30*x16 + 30*x27) + 0.0872037269723804*(15*(5*x50)**(-0.1)*x17 + 130*(100
       *x61)**(-0.3)*x28 + 30*x17 + 30*x28) + 0.0535355237464941*(15*(5*x51)**(
       -0.1)*x18 + 130*(100*x62)**(-0.3)*x29 + 30*x18 + 30*x29) + 
       0.0328661675632188*(15*(5*x52)**(-0.1)*x19 + 130*(100*x63)**(-0.3)*x30
        + 30*x19 + 30*x30) + 0.0201769758601514*(15*(5*x53)**(-0.1)*x20 + 130*(
       100*x64)**(-0.3)*x31 + 30*x20 + 30*x31) + 0.0123869128969189*(15*(5*x54)
       **(-0.1)*x21 + 130*(100*x65)**(-0.3)*x32 + 30*x21 + 30*x32) + 
       0.00760448999787347*(15*(5*x55)**(-0.1)*x22 + 130*(100*x66)**(-0.3)*x33
        + 30*x22 + 30*x33)) - 40*x1 - 24.5565301416304*x2 - 15.07557931492*x3
        - 9.25509794623431*x4 - 5.6818272920111*x5 - 3.48814907889522*x6
        - 2.14142094985976*x7 - 1.31464670252875*x8 - 0.807079034406055*x9
        - 0.495476515876756*x10 - 0.304179599914939*x11 + objvar =E= 0;

* set non-default bounds
x1.fx = 12.735;
x2.up = 140;
x3.up = 140;
x4.up = 140;
x5.up = 140;
x6.up = 140;
x7.up = 140;
x8.up = 140;
x9.up = 140;
x10.up = 140;
x11.up = 140;
x12.up = 140;
x13.up = 140;
x14.up = 140;
x15.up = 140;
x16.up = 140;
x17.up = 140;
x18.up = 140;
x19.up = 140;
x20.up = 140;
x21.up = 140;
x22.up = 140;
x23.up = 140;
x24.up = 140;
x25.up = 140;
x26.up = 140;
x27.up = 140;
x28.up = 140;
x29.up = 140;
x30.up = 140;
x31.up = 140;
x32.up = 140;
x33.up = 140;
x34.fx = 0.1;
x35.lo = 0.1; x35.up = 10000;
x36.lo = 0.1; x36.up = 10000;
x37.lo = 0.1; x37.up = 10000;
x38.lo = 0.1; x38.up = 10000;
x39.lo = 0.1; x39.up = 10000;
x40.lo = 0.1; x40.up = 10000;
x41.lo = 0.1; x41.up = 10000;
x42.lo = 0.1; x42.up = 10000;
x43.lo = 0.1; x43.up = 10000;
x44.lo = 0.1; x44.up = 10000;
x45.fx = 0.2;
x46.lo = 0.2; x46.up = 10000;
x47.lo = 0.2; x47.up = 10000;
x48.lo = 0.2; x48.up = 10000;
x49.lo = 0.2; x49.up = 10000;
x50.lo = 0.2; x50.up = 10000;
x51.lo = 0.2; x51.up = 10000;
x52.lo = 0.2; x52.up = 10000;
x53.lo = 0.2; x53.up = 10000;
x54.lo = 0.2; x54.up = 10000;
x55.lo = 0.2; x55.up = 10000;
x56.fx = 0.01;
x57.lo = 0.01; x57.up = 10000;
x58.lo = 0.01; x58.up = 10000;
x59.lo = 0.01; x59.up = 10000;
x60.lo = 0.01; x60.up = 10000;
x61.lo = 0.01; x61.up = 10000;
x62.lo = 0.01; x62.up = 10000;
x63.lo = 0.01; x63.up = 10000;
x64.lo = 0.01; x64.up = 10000;
x65.lo = 0.01; x65.up = 10000;
x66.lo = 0.01; x66.up = 10000;
x67.fx = 0;
x68.up = 400;
x69.up = 400;
x70.up = 400;
x71.up = 400;
x72.up = 400;
x73.up = 400;
x74.up = 400;
x75.up = 400;
x76.up = 400;
x77.up = 400;
objvar.lo = 0; objvar.up = 30000;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2022-10-14 Git hash: 2be6d7c0
Imprint / Privacy Policy / License: CC-BY 4.0