MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Removed Instance gtm

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
543.56509480 p1 ( gdx sol )
(infeas: 9e-16)
Other points (infeas > 1e-08)  
Dual Bounds
543.56509480 (ANTIGONE)
543.56509420 (BARON)
543.56508370 (COUENNE)
543.56509470 (LINDO)
543.56509310 (SCIP)
References Manne, Alan S and Beltramo, M A, GTM: An International Gas Trade Model, International Energy Program Report, Stanford University, 1984.
Source GAMS Model Library model gtm
Application Gas Trade
Added to library 31 Jul 2001
Removed from library 16 Feb 2022
Removed because Instance is continuous and convex.
Problem type NLP
#Variables 63
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 20
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature convex
#Nonzeros in Objective 59
#Nonlinear Nonzeros in Objective 20
#Constraints 24
#Linear Constraints 24
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div log vcpower
Constraints curvature linear
#Nonzeros in Jacobian 102
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 20
#Nonzeros in Diagonal of Hessian of Lagrangian 20
#Blocks in Hessian of Lagrangian 20
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 3.7200e-02
Maximal coefficient 3.2561e+02
Infeasibility of initial point 2.2
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         25        1       14       10        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         64       64        0        0        0        0        0        0
*  FX      4
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        162      142       20        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
          ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25;


e1..    x1 + x2 + x3 + x4 + x5 + x6 - x40 =L= 0;

e2..    x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 - x41 =L= 0;

e3..    x17 + x18 - x42 =L= 0;

e4..    x19 + x20 - x43 =L= 0;

e5..    x21 + x22 + x23 + x24 + x25 + x26 - x44 =L= 0;

e6..    x27 + x28 + x29 - x45 =L= 0;

e7..    x30 + x31 + x32 - x46 =L= 0;

e8..    x33 + x34 + x35 + x36 + x37 - x47 =L= 0;

e9..    x38 - x48 =L= 0;

e10..    x39 - x49 =L= 0;

e11..    x1 - x50 =G= 0;

e12..    x17 - x51 =G= 0;

e13..    x7 - x52 =G= 0;

e14..    x8 - x53 =G= 0;

e15..    x9 + x18 + x21 - x54 =G= 0;

e16..    x2 + x10 + x22 - x55 =G= 0;

e17..    x3 + x11 + x19 + x23 - x56 =G= 0;

e18..    x4 + x24 - x57 =G= 0;

e19..    x5 + x12 + x20 + x25 + x27 + x30 + x33 + x39 - x58 =G= 0;

e20..    x26 + x28 + x31 - x59 =G= 0;

e21..    x13 + x29 + x34 - x60 =G= 0;

e22..    x14 + x35 - x61 =G= 0;

e23..    x6 + x15 + x32 + x36 + x38 - x62 =G= 0;

e24..    x16 + x37 - x63 =G= 0;

e25.. -(-4.84/x50 - 0.14/x51 - 6.4827/x52 - 6.6654/x53 - 8.89583741831423*x54**
      (-0.666666666666667) - 20.7788808225955*x55**(-0.515151515151515) - 
      12.8222379289592*x56**(-0.538461538461538) - 112.274462577384*x57**(-
      0.123595505617978) - 78.984522912416*x58**(-0.538461538461538) - 
      325.606233858943*x59**(-0.19047619047619) - 19.9925533406708*x60**(-
      0.492537313432836) - 20.2959676146409*x61**(-0.851851851851852) - 
      34.6492709112034*x62**(-1.32558139534884) - 2.07326743881507*x63**(-
      0.754385964912281) - (0.0372*x44 - 6.47537234042553*log(1 - 
      0.102564102564103*x44) - 0.489999999999999*log(1 - 1.38888888888889*x43)
       - 1.68*log(1 - 0.392156862745098*x45) - 1.2271875*log(1 - 
      0.581395348837209*x46) - 0.2187*x46 - 0.979999999999999*log(1 - 
      0.694444444444444*x47) - 0.35*log(1 - 1.92307692307692*x48))) + 0.25*x1
       + 2.29*x2 + 2.22*x3 + 2.03*x4 + 1.96*x5 + 2.13*x6 + 0.4*x7 + 0.9*x8
       + 1.15*x9 + 1.1*x10 + 1.1*x11 + 0.8*x12 + 0.8*x13 + 0.65*x14 + 0.7*x15
       + 0.65*x16 + 1.5*x18 + 0.72*x19 + 0.46*x20 + 2.12*x21 + 1.08*x22
       + 1.01*x23 + 0.82*x24 + 0.75*x25 + 0.04*x26 + 0.86*x27 + 0.14*x28
       + 0.64*x29 + 0.77*x30 + 0.05*x31 + 0.94*x32 + 0.53*x33 + 0.31*x34
       + 0.58*x35 + 0.7*x36 + 1.91*x37 + 0.43*x38 + 6*x39 + 2*x49 - objvar
       =E= 0;

* set non-default bounds
x2.up = 0.067;
x3.up = 0.067;
x4.up = 0.067;
x5.up = 0.067;
x6.up = 0.033;
x9.up = 0.3;
x10.up = 0.15;
x11.up = 0.1;
x19.up = 0.34;
x20.up = 0.35;
x22.up = 1.39;
x23.up = 1.06;
x24.up = 2;
x25.up = 2.62;
x26.up = 3.73;
x27.up = 0.62;
x28.up = 2.3;
x29.up = 1.03;
x30.up = 0.12;
x31.up = 1.45;
x32.up = 1.46;
x33.up = 0.48;
x34.up = 0.14;
x36.up = 0.1;
x38.up = 0.48;
x39.up = 0.8;
x40.up = 2.475;
x41.up = 3.7125;
x42.up = 0.297;
x43.up = 0.7128;
x44.up = 9.6525;
x45.up = 2.5245;
x46.up = 1.7028;
x47.up = 1.4256;
x48.up = 0.5148;
x49.up = 99;
x50.fx = 2.2;
x51.fx = 0.2;
x52.fx = 1.47;
x53.fx = 1.38;
x54.lo = 0.2;
x55.lo = 0.2;
x56.lo = 0.2;
x57.lo = 0.2;
x58.lo = 0.2;
x59.lo = 0.2;
x60.lo = 0.2;
x61.lo = 0.2;
x62.lo = 0.2;
x63.lo = 0.2;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2022-10-14 Git hash: 2be6d7c0
Imprint / Privacy Policy / License: CC-BY 4.0