MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance kall_circlespolygons_c1p5a

A set of circles and convex polygons are to be cut from rectangular design plates to be produced, or from a set of stocked rectangles of known geometric dimensions.
The objective is to minimize the area of the design rectangles.
The design plates are subject to lower and upper bounds of their widths and lengths.
The objects are free of any orientation restrictions.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
4.43599630 p1 ( gdx sol )
(infeas: 4e-15)
2.84872021 p2 ( gdx sol )
(infeas: 2e-14)
Other points (infeas > 1e-08)  
Dual Bounds
0.00000000 (ANTIGONE)
0.00000000 (BARON)
0.00000000 (COUENNE)
-0.00000000 (GUROBI)
0.00000000 (LINDO)
0.25087228 (SCIP)
References Kallrath, Josef, Cutting circles and polygons from area-minimizing rectangles, Journal of Global Optimization, 43:2-3, 2009, 299-328.
Source ANTIGONE test library model Other_MIQCQP/kall_circlespolygons_c1p5a
Application Geometry
Added to library 15 Aug 2014
Problem type QCP
#Variables 158
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 68
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 174
#Linear Constraints 68
#Quadratic Constraints 106
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 619
#Nonlinear Nonzeros in Jacobian 212
#Nonzeros in (Upper-Left) Hessian of Lagrangian 212
#Nonzeros in Diagonal of Hessian of Lagrangian 10
#Blocks in Hessian of Lagrangian 11
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 14
Average blocksize in Hessian of Lagrangian 6.181818
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.6667e-01
Maximal coefficient 1.2000e+00
Infeasibility of initial point 7.084
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        174      145        0       29        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        158      158        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        619      407      212        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,objvar;

Positive Variables  x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x60
          ,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x128
          ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
          ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
          ,x155,x156,x157;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174;


e1..  - x1 + objvar =E= -8.5238934211693;

e2.. -x156*x157 + x1 =E= 0;

e3..    x126 - x156 =L= -1.2;

e4..    x127 - x157 =L= -1.2;

e5..  - 0.166666666666667*x128 - 0.166666666666667*x130
      - 0.166666666666667*x132 - 0.166666666666667*x134
      - 0.166666666666667*x136 - 0.166666666666667*x138 + x152 =E= 0;

e6..  - 0.166666666666667*x129 - 0.166666666666667*x131
      - 0.166666666666667*x133 - 0.166666666666667*x135
      - 0.166666666666667*x137 - 0.166666666666667*x139 + x153 =E= 0;

e7..  - 0.166666666666667*x140 - 0.166666666666667*x142
      - 0.166666666666667*x144 - 0.166666666666667*x146
      - 0.166666666666667*x148 - 0.166666666666667*x150 + x154 =E= 0;

e8..  - 0.166666666666667*x141 - 0.166666666666667*x143
      - 0.166666666666667*x145 - 0.166666666666667*x147
      - 0.166666666666667*x149 - 0.166666666666667*x151 + x155 =E= 0;

e9.. x2*x2 + x4*x4 =E= 1;

e10.. x3*x3 + x5*x5 =E= 1;

e11..    x128 - x156 =L= 0;

e12..    x129 - x157 =L= 0;

e13..    x130 - x156 =L= 0;

e14..    x131 - x157 =L= 0;

e15..    x132 - x156 =L= 0;

e16..    x133 - x157 =L= 0;

e17..    x134 - x156 =L= 0;

e18..    x135 - x157 =L= 0;

e19..    x136 - x156 =L= 0;

e20..    x137 - x157 =L= 0;

e21..    x138 - x156 =L= 0;

e22..    x139 - x157 =L= 0;

e23..    x140 - x156 =L= 0;

e24..    x141 - x157 =L= 0;

e25..    x142 - x156 =L= 0;

e26..    x143 - x157 =L= 0;

e27..    x144 - x156 =L= 0;

e28..    x145 - x157 =L= 0;

e29..    x146 - x156 =L= 0;

e30..    x147 - x157 =L= 0;

e31..    x148 - x156 =L= 0;

e32..    x149 - x157 =L= 0;

e33..    x150 - x156 =L= 0;

e34..    x151 - x157 =L= 0;

e35..    0.833333333333333*x2 + 0.75*x4 + x128 - x152 =E= 0;

e36..  - 0.166666666666667*x2 + 0.75*x4 + x130 - x152 =E= 0;

e37..  - 0.666666666666667*x2 + 0.25*x4 + x132 - x152 =E= 0;

e38..  - 0.666666666666667*x2 - 0.25*x4 + x134 - x152 =E= 0;

e39..  - 0.166666666666667*x2 - 0.75*x4 + x136 - x152 =E= 0;

e40..    0.833333333333333*x2 - 0.75*x4 + x138 - x152 =E= 0;

e41..    0.833333333333333*x3 + 0.75*x5 + x140 - x154 =E= 0;

e42..  - 0.166666666666667*x3 + 0.75*x5 + x142 - x154 =E= 0;

e43..  - 0.666666666666667*x3 + 0.25*x5 + x144 - x154 =E= 0;

e44..  - 0.666666666666667*x3 - 0.25*x5 + x146 - x154 =E= 0;

e45..  - 0.166666666666667*x3 - 0.75*x5 + x148 - x154 =E= 0;

e46..    0.833333333333333*x3 - 0.75*x5 + x150 - x154 =E= 0;

e47..  - 0.75*x2 + 0.833333333333333*x4 + x129 - x153 =E= 0;

e48..  - 0.75*x2 - 0.166666666666667*x4 + x131 - x153 =E= 0;

e49..  - 0.25*x2 - 0.666666666666667*x4 + x133 - x153 =E= 0;

e50..    0.25*x2 - 0.666666666666667*x4 + x135 - x153 =E= 0;

e51..    0.75*x2 - 0.166666666666667*x4 + x137 - x153 =E= 0;

e52..    0.75*x2 + 0.833333333333333*x4 + x139 - x153 =E= 0;

e53..  - 0.75*x3 + 0.833333333333333*x5 + x141 - x155 =E= 0;

e54..  - 0.75*x3 - 0.166666666666667*x5 + x143 - x155 =E= 0;

e55..  - 0.25*x3 - 0.666666666666667*x5 + x145 - x155 =E= 0;

e56..    0.25*x3 - 0.666666666666667*x5 + x147 - x155 =E= 0;

e57..    0.75*x3 - 0.166666666666667*x5 + x149 - x155 =E= 0;

e58..    0.75*x3 + 0.833333333333333*x5 + x151 - x155 =E= 0;

e59.. x32*x32 + x33*x33 =E= 1;

e60..  - x33 + x34 =E= 0;

e61..    x32 + x35 =E= 0;

e62.. x32*x20 + x6 + x36 - x128 =E= 0;

e63.. x33*x20 + x7 + x37 - x129 =E= 0;

e64.. x32*x21 + x6 + x38 - x130 =E= 0;

e65.. x33*x21 + x7 + x39 - x131 =E= 0;

e66.. x32*x22 + x6 + x40 - x132 =E= 0;

e67.. x33*x22 + x7 + x41 - x133 =E= 0;

e68.. x32*x23 + x6 + x42 - x134 =E= 0;

e69.. x33*x23 + x7 + x43 - x135 =E= 0;

e70.. x32*x24 + x6 + x44 - x136 =E= 0;

e71.. x33*x24 + x7 + x45 - x137 =E= 0;

e72.. x32*x25 + x6 + x46 - x138 =E= 0;

e73.. x33*x25 + x7 + x47 - x139 =E= 0;

e74.. x32*x26 + x6 + x48 - x140 =E= 0;

e75.. x33*x26 + x7 + x49 - x141 =E= 0;

e76.. x32*x27 + x6 + x50 - x142 =E= 0;

e77.. x33*x27 + x7 + x51 - x143 =E= 0;

e78.. x32*x28 + x6 + x52 - x144 =E= 0;

e79.. x33*x28 + x7 + x53 - x145 =E= 0;

e80.. x32*x29 + x6 + x54 - x146 =E= 0;

e81.. x33*x29 + x7 + x55 - x147 =E= 0;

e82.. x32*x30 + x6 + x56 - x148 =E= 0;

e83.. x33*x30 + x7 + x57 - x149 =E= 0;

e84.. x32*x31 + x6 + x58 - x150 =E= 0;

e85.. x33*x31 + x7 + x59 - x151 =E= 0;

e86.. -x8*x34 + x36 =E= 0;

e87.. -x8*x35 + x37 =E= 0;

e88.. -x9*x34 + x38 =E= 0;

e89.. -x9*x35 + x39 =E= 0;

e90.. -x10*x34 + x40 =E= 0;

e91.. -x10*x35 + x41 =E= 0;

e92.. -x11*x34 + x42 =E= 0;

e93.. -x11*x35 + x43 =E= 0;

e94.. -x12*x34 + x44 =E= 0;

e95.. -x12*x35 + x45 =E= 0;

e96.. -x13*x34 + x46 =E= 0;

e97.. -x13*x35 + x47 =E= 0;

e98.. x14*x34 + x48 =E= 0;

e99.. x14*x35 + x49 =E= 0;

e100.. x15*x34 + x50 =E= 0;

e101.. x15*x35 + x51 =E= 0;

e102.. x16*x34 + x52 =E= 0;

e103.. x16*x35 + x53 =E= 0;

e104.. x17*x34 + x54 =E= 0;

e105.. x17*x35 + x55 =E= 0;

e106.. x18*x34 + x56 =E= 0;

e107.. x18*x35 + x57 =E= 0;

e108.. x19*x34 + x58 =E= 0;

e109.. x19*x35 + x59 =E= 0;

e110.. x90*x90 + x91*x91 =E= 1;

e111.. x92*x92 + x93*x93 =E= 1;

e112..  - x91 + x94 =E= 0;

e113..  - x93 + x96 =E= 0;

e114..    x90 + x95 =E= 0;

e115..    x92 + x97 =E= 0;

e116.. x90*x76 + x60 + x98 - x128 =E= 0;

e117.. x91*x76 + x61 + x99 - x129 =E= 0;

e118.. x90*x77 + x60 + x100 - x130 =E= 0;

e119.. x91*x77 + x61 + x101 - x131 =E= 0;

e120.. x90*x78 + x60 + x102 - x132 =E= 0;

e121.. x91*x78 + x61 + x103 - x133 =E= 0;

e122.. x90*x79 + x60 + x104 - x134 =E= 0;

e123.. x91*x79 + x61 + x105 - x135 =E= 0;

e124.. x90*x80 + x60 + x106 - x136 =E= 0;

e125.. x91*x80 + x61 + x107 - x137 =E= 0;

e126.. x90*x81 + x60 + x108 - x138 =E= 0;

e127.. x91*x81 + x61 + x109 - x139 =E= 0;

e128.. x92*x82 + x62 + x110 - x140 =E= 0;

e129.. x93*x82 + x63 + x111 - x141 =E= 0;

e130.. x92*x83 + x62 + x112 - x142 =E= 0;

e131.. x93*x83 + x63 + x113 - x143 =E= 0;

e132.. x92*x84 + x62 + x114 - x144 =E= 0;

e133.. x93*x84 + x63 + x115 - x145 =E= 0;

e134.. x92*x85 + x62 + x116 - x146 =E= 0;

e135.. x93*x85 + x63 + x117 - x147 =E= 0;

e136.. x92*x86 + x62 + x118 - x148 =E= 0;

e137.. x93*x86 + x63 + x119 - x149 =E= 0;

e138.. x92*x87 + x62 + x120 - x150 =E= 0;

e139.. x93*x87 + x63 + x121 - x151 =E= 0;

e140.. x90*x88 + x60 + x122 - x126 =E= 0;

e141.. x91*x88 + x61 + x123 - x127 =E= 0;

e142.. x92*x89 + x62 + x124 - x126 =E= 0;

e143.. x93*x89 + x63 + x125 - x127 =E= 0;

e144.. -x64*x94 + x98 =E= 0;

e145.. -x64*x95 + x99 =E= 0;

e146.. -x65*x94 + x100 =E= 0;

e147.. -x65*x95 + x101 =E= 0;

e148.. -x66*x94 + x102 =E= 0;

e149.. -x66*x95 + x103 =E= 0;

e150.. -x67*x94 + x104 =E= 0;

e151.. -x67*x95 + x105 =E= 0;

e152.. -x68*x94 + x106 =E= 0;

e153.. -x68*x95 + x107 =E= 0;

e154.. -x69*x94 + x108 =E= 0;

e155.. -x69*x95 + x109 =E= 0;

e156.. -x70*x96 + x110 =E= 0;

e157.. -x70*x97 + x111 =E= 0;

e158.. -x71*x96 + x112 =E= 0;

e159.. -x71*x97 + x113 =E= 0;

e160.. -x72*x96 + x114 =E= 0;

e161.. -x72*x97 + x115 =E= 0;

e162.. -x73*x96 + x116 =E= 0;

e163.. -x73*x97 + x117 =E= 0;

e164.. -x74*x96 + x118 =E= 0;

e165.. -x74*x97 + x119 =E= 0;

e166.. -x75*x96 + x120 =E= 0;

e167.. -x75*x97 + x121 =E= 0;

e168..    1.2*x94 + x122 =E= 0;

e169..    1.2*x95 + x123 =E= 0;

e170..    1.2*x96 + x124 =E= 0;

e171..    1.2*x97 + x125 =E= 0;

e172..    x126 =L= 4;

e173..    x127 =L= 2;

e174..    x152 - x154 =L= 0;

* set non-default bounds
x1.lo = 1.44; x1.up = 32;
x2.lo = -1; x2.up = 1;
x3.lo = -1; x3.up = 1;
x4.lo = -1; x4.up = 1;
x5.lo = -1; x5.up = 1;
x6.up = 8;
x7.up = 4;
x8.up = 8.94427190999916;
x9.up = 8.94427190999916;
x10.up = 8.94427190999916;
x11.up = 8.94427190999916;
x12.up = 8.94427190999916;
x13.up = 8.94427190999916;
x14.up = 8.94427190999916;
x15.up = 8.94427190999916;
x16.up = 8.94427190999916;
x17.up = 8.94427190999916;
x18.up = 8.94427190999916;
x19.up = 8.94427190999916;
x20.lo = -8.94427190999916; x20.up = 8.94427190999916;
x21.lo = -8.94427190999916; x21.up = 8.94427190999916;
x22.lo = -8.94427190999916; x22.up = 8.94427190999916;
x23.lo = -8.94427190999916; x23.up = 8.94427190999916;
x24.lo = -8.94427190999916; x24.up = 8.94427190999916;
x25.lo = -8.94427190999916; x25.up = 8.94427190999916;
x26.lo = -8.94427190999916; x26.up = 8.94427190999916;
x27.lo = -8.94427190999916; x27.up = 8.94427190999916;
x28.lo = -8.94427190999916; x28.up = 8.94427190999916;
x29.lo = -8.94427190999916; x29.up = 8.94427190999916;
x30.lo = -8.94427190999916; x30.up = 8.94427190999916;
x31.lo = -8.94427190999916; x31.up = 8.94427190999916;
x32.lo = -1; x32.up = 1;
x33.lo = -1; x33.up = 1;
x34.lo = -1; x34.up = 1;
x35.lo = -1; x35.up = 1;
x36.lo = -8.94427190999916; x36.up = 8.94427190999916;
x37.lo = -8.94427190999916; x37.up = 8.94427190999916;
x38.lo = -8.94427190999916; x38.up = 8.94427190999916;
x39.lo = -8.94427190999916; x39.up = 8.94427190999916;
x40.lo = -8.94427190999916; x40.up = 8.94427190999916;
x41.lo = -8.94427190999916; x41.up = 8.94427190999916;
x42.lo = -8.94427190999916; x42.up = 8.94427190999916;
x43.lo = -8.94427190999916; x43.up = 8.94427190999916;
x44.lo = -8.94427190999916; x44.up = 8.94427190999916;
x45.lo = -8.94427190999916; x45.up = 8.94427190999916;
x46.lo = -8.94427190999916; x46.up = 8.94427190999916;
x47.lo = -8.94427190999916; x47.up = 8.94427190999916;
x48.lo = -8.94427190999916; x48.up = 8.94427190999916;
x49.lo = -8.94427190999916; x49.up = 8.94427190999916;
x50.lo = -8.94427190999916; x50.up = 8.94427190999916;
x51.lo = -8.94427190999916; x51.up = 8.94427190999916;
x52.lo = -8.94427190999916; x52.up = 8.94427190999916;
x53.lo = -8.94427190999916; x53.up = 8.94427190999916;
x54.lo = -8.94427190999916; x54.up = 8.94427190999916;
x55.lo = -8.94427190999916; x55.up = 8.94427190999916;
x56.lo = -8.94427190999916; x56.up = 8.94427190999916;
x57.lo = -8.94427190999916; x57.up = 8.94427190999916;
x58.lo = -8.94427190999916; x58.up = 8.94427190999916;
x59.lo = -8.94427190999916; x59.up = 8.94427190999916;
x60.up = 8;
x61.up = 4;
x62.up = 8;
x63.up = 4;
x64.up = 8.94427190999916;
x65.up = 8.94427190999916;
x66.up = 8.94427190999916;
x67.up = 8.94427190999916;
x68.up = 8.94427190999916;
x69.up = 8.94427190999916;
x70.up = 8.94427190999916;
x71.up = 8.94427190999916;
x72.up = 8.94427190999916;
x73.up = 8.94427190999916;
x74.up = 8.94427190999916;
x75.up = 8.94427190999916;
x76.lo = -8.94427190999916; x76.up = 8.94427190999916;
x77.lo = -8.94427190999916; x77.up = 8.94427190999916;
x78.lo = -8.94427190999916; x78.up = 8.94427190999916;
x79.lo = -8.94427190999916; x79.up = 8.94427190999916;
x80.lo = -8.94427190999916; x80.up = 8.94427190999916;
x81.lo = -8.94427190999916; x81.up = 8.94427190999916;
x82.lo = -8.94427190999916; x82.up = 8.94427190999916;
x83.lo = -8.94427190999916; x83.up = 8.94427190999916;
x84.lo = -8.94427190999916; x84.up = 8.94427190999916;
x85.lo = -8.94427190999916; x85.up = 8.94427190999916;
x86.lo = -8.94427190999916; x86.up = 8.94427190999916;
x87.lo = -8.94427190999916; x87.up = 8.94427190999916;
x88.lo = -8.94427190999916; x88.up = 8.94427190999916;
x89.lo = -8.94427190999916; x89.up = 8.94427190999916;
x90.lo = -1; x90.up = 1;
x91.lo = -1; x91.up = 1;
x92.lo = -1; x92.up = 1;
x93.lo = -1; x93.up = 1;
x94.lo = -1; x94.up = 1;
x95.lo = -1; x95.up = 1;
x96.lo = -1; x96.up = 1;
x97.lo = -1; x97.up = 1;
x98.lo = -8.94427190999916; x98.up = 8.94427190999916;
x99.lo = -8.94427190999916; x99.up = 8.94427190999916;
x100.lo = -8.94427190999916; x100.up = 8.94427190999916;
x101.lo = -8.94427190999916; x101.up = 8.94427190999916;
x102.lo = -8.94427190999916; x102.up = 8.94427190999916;
x103.lo = -8.94427190999916; x103.up = 8.94427190999916;
x104.lo = -8.94427190999916; x104.up = 8.94427190999916;
x105.lo = -8.94427190999916; x105.up = 8.94427190999916;
x106.lo = -8.94427190999916; x106.up = 8.94427190999916;
x107.lo = -8.94427190999916; x107.up = 8.94427190999916;
x108.lo = -8.94427190999916; x108.up = 8.94427190999916;
x109.lo = -8.94427190999916; x109.up = 8.94427190999916;
x110.lo = -8.94427190999916; x110.up = 8.94427190999916;
x111.lo = -8.94427190999916; x111.up = 8.94427190999916;
x112.lo = -8.94427190999916; x112.up = 8.94427190999916;
x113.lo = -8.94427190999916; x113.up = 8.94427190999916;
x114.lo = -8.94427190999916; x114.up = 8.94427190999916;
x115.lo = -8.94427190999916; x115.up = 8.94427190999916;
x116.lo = -8.94427190999916; x116.up = 8.94427190999916;
x117.lo = -8.94427190999916; x117.up = 8.94427190999916;
x118.lo = -8.94427190999916; x118.up = 8.94427190999916;
x119.lo = -8.94427190999916; x119.up = 8.94427190999916;
x120.lo = -8.94427190999916; x120.up = 8.94427190999916;
x121.lo = -8.94427190999916; x121.up = 8.94427190999916;
x122.lo = -8.94427190999916; x122.up = 8.94427190999916;
x123.lo = -8.94427190999916; x123.up = 8.94427190999916;
x124.lo = -8.94427190999916; x124.up = 8.94427190999916;
x125.lo = -8.94427190999916; x125.up = 8.94427190999916;
x126.lo = 1.2; x126.up = 6.8;
x127.lo = 1.2; x127.up = 2.8;
x128.up = 8;
x129.up = 4;
x130.up = 8;
x131.up = 4;
x132.up = 8;
x133.up = 4;
x134.up = 8;
x135.up = 4;
x136.up = 8;
x137.up = 4;
x138.up = 8;
x139.up = 4;
x140.up = 8;
x141.up = 4;
x142.up = 8;
x143.up = 4;
x144.up = 8;
x145.up = 4;
x146.up = 8;
x147.up = 4;
x148.up = 8;
x149.up = 4;
x150.up = 8;
x151.up = 4;
x152.up = 8;
x153.up = 4;
x154.up = 8;
x155.up = 4;
x156.up = 8;
x157.up = 4;
objvar.lo = 0; objvar.up = 32;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0