MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance kall_circlesrectangles_c6r1

A set of circles and rectangles are to be cut from rectangular design plates to be produced, or from a set of stocked rectangles of known geometric dimensions.
The objective is to minimize the area of the design rectangles.
The design plates are subject to lower and upper bounds of their widths and lengths.
The objects are free of any orientation restrictions.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
8.65049249 p1 ( gdx sol )
(infeas: 1e-10)
7.30580885 p2 ( gdx sol )
(infeas: 6e-15)
7.19145104 p3 ( gdx sol )
(infeas: 4e-11)
7.16450027 p4 ( gdx sol )
(infeas: 6e-14)
Other points (infeas > 1e-08)  
Dual Bounds
0.00000000 (ANTIGONE)
4.08706778 (BARON)
0.00000000 (COUENNE)
0.00000000 (GUROBI)
0.00000000 (LINDO)
7.13652938 (SCIP)
References Kallrath, Josef, Cutting circles and polygons from area-minimizing rectangles, Journal of Global Optimization, 43:2-3, 2009, 299-328.
Source ANTIGONE test library model Other_MIQCQP/kall_circlesrectangles_c6r1
Application Geometry
Added to library 15 Aug 2014
Problem type QCP
#Variables 184
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 96
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 192
#Linear Constraints 59
#Quadratic Constraints 133
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 653
#Nonlinear Nonzeros in Jacobian 298
#Nonzeros in (Upper-Left) Hessian of Lagrangian 310
#Nonzeros in Diagonal of Hessian of Lagrangian 28
#Blocks in Hessian of Lagrangian 17
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 7
Average blocksize in Hessian of Lagrangian 5.647059
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.0000e-01
Maximal coefficient 2.0000e+00
Infeasibility of initial point 20.35
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        192      155       15       22        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        184      184        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        653      355      298        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
          ,x182,x183,objvar;

Positive Variables  x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
          ,x35,x36,x37,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181,x182
          ,x183;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192;


e1..  - x1 + objvar =E= -23.2393785915978;

e2.. -x172*x173 + x1 =E= 0;

e3.. (x160 - x162)*(x160 - x162) + (x161 - x163)*(x161 - x163) =G= 3.24;

e4.. (x160 - x164)*(x160 - x164) + (x161 - x165)*(x161 - x165) =G= 4;

e5.. (x160 - x166)*(x160 - x166) + (x161 - x167)*(x161 - x167) =G= 8.41;

e6.. (x160 - x168)*(x160 - x168) + (x161 - x169)*(x161 - x169) =G= 6.25;

e7.. (x160 - x170)*(x160 - x170) + (x161 - x171)*(x161 - x171) =G= 2.89;

e8.. (x162 - x164)*(x162 - x164) + (x163 - x165)*(x163 - x165) =G= 1.96;

e9.. (x162 - x166)*(x162 - x166) + (x163 - x167)*(x163 - x167) =G= 5.29;

e10.. (x162 - x168)*(x162 - x168) + (x163 - x169)*(x163 - x169) =G= 3.61;

e11.. (x162 - x170)*(x162 - x170) + (x163 - x171)*(x163 - x171) =G= 1.21;

e12.. (x164 - x166)*(x164 - x166) + (x165 - x167)*(x165 - x167) =G= 6.25;

e13.. (x164 - x168)*(x164 - x168) + (x165 - x169)*(x165 - x169) =G= 4.41;

e14.. (x164 - x170)*(x164 - x170) + (x165 - x171)*(x165 - x171) =G= 1.69;

e15.. (x166 - x168)*(x166 - x168) + (x167 - x169)*(x167 - x169) =G= 9;

e16.. (x166 - x170)*(x166 - x170) + (x167 - x171)*(x167 - x171) =G= 4.84;

e17.. (x168 - x170)*(x168 - x170) + (x169 - x171)*(x169 - x171) =G= 3.24;

e18..    x160 - x172 =L= -1.2;

e19..    x161 - x173 =L= -1.2;

e20..    x162 - x172 =L= -0.6;

e21..    x163 - x173 =L= -0.6;

e22..    x164 - x172 =L= -0.8;

e23..    x165 - x173 =L= -0.8;

e24..    x166 - x172 =L= -1.7;

e25..    x167 - x173 =L= -1.7;

e26..    x168 - x172 =L= -1.3;

e27..    x169 - x173 =L= -1.3;

e28..    x170 - x172 =L= -0.5;

e29..    x171 - x173 =L= -0.5;

e30..  - x172 + x174 =L= 0;

e31..  - x173 + x175 =L= 0;

e32..  - x172 + x176 =L= 0;

e33..  - x173 + x177 =L= 0;

e34..  - x172 + x178 =L= 0;

e35..  - x173 + x179 =L= 0;

e36..  - x172 + x180 =L= 0;

e37..  - x173 + x181 =L= 0;

e38..    x152 + x174 - x176 =E= 0;

e39..    x153 + x175 - x177 =E= 0;

e40..    x154 + x176 - x178 =E= 0;

e41..    x155 + x177 - x179 =E= 0;

e42..    x156 + x178 - x180 =E= 0;

e43..    x157 + x179 - x181 =E= 0;

e44..    x158 - x174 + 2*x180 - x182 =E= 0;

e45..    x159 - x175 + 2*x181 - x183 =E= 0;

e46.. x152*x154 + x153*x155 =E= 0;

e47..    x152 + x156 =E= 0;

e48..    x153 + x157 =E= 0;

e49..    x154 + x158 =E= 0;

e50..    x155 + x159 =E= 0;

e51.. x152*x152 + x153*x153 =E= 0.25;

e52.. x154*x154 + x155*x155 =E= 0.64;

e53.. x68*x68 + x69*x69 =E= 1;

e54.. x70*x70 + x71*x71 =E= 1;

e55.. x72*x72 + x73*x73 =E= 1;

e56.. x74*x74 + x75*x75 =E= 1;

e57.. x76*x76 + x77*x77 =E= 1;

e58.. x78*x78 + x79*x79 =E= 1;

e59..  - x69 + x80 =E= 0;

e60..  - x71 + x82 =E= 0;

e61..  - x73 + x84 =E= 0;

e62..  - x75 + x86 =E= 0;

e63..  - x77 + x88 =E= 0;

e64..  - x79 + x90 =E= 0;

e65..    x68 + x81 =E= 0;

e66..    x70 + x83 =E= 0;

e67..    x72 + x85 =E= 0;

e68..    x74 + x87 =E= 0;

e69..    x76 + x89 =E= 0;

e70..    x78 + x91 =E= 0;

e71.. x68*x38 + x2 + x92 - x174 =E= 0;

e72.. x69*x38 + x3 + x93 - x175 =E= 0;

e73.. x68*x39 + x2 + x94 - x176 =E= 0;

e74.. x69*x39 + x3 + x95 - x177 =E= 0;

e75.. x68*x40 + x2 + x96 - x178 =E= 0;

e76.. x69*x40 + x3 + x97 - x179 =E= 0;

e77.. x68*x41 + x2 + x98 - x180 =E= 0;

e78.. x69*x41 + x3 + x99 - x181 =E= 0;

e79.. x70*x42 + x4 + x100 - x174 =E= 0;

e80.. x71*x42 + x5 + x101 - x175 =E= 0;

e81.. x70*x43 + x4 + x102 - x176 =E= 0;

e82.. x71*x43 + x5 + x103 - x177 =E= 0;

e83.. x70*x44 + x4 + x104 - x178 =E= 0;

e84.. x71*x44 + x5 + x105 - x179 =E= 0;

e85.. x70*x45 + x4 + x106 - x180 =E= 0;

e86.. x71*x45 + x5 + x107 - x181 =E= 0;

e87.. x72*x46 + x6 + x108 - x174 =E= 0;

e88.. x73*x46 + x7 + x109 - x175 =E= 0;

e89.. x72*x47 + x6 + x110 - x176 =E= 0;

e90.. x73*x47 + x7 + x111 - x177 =E= 0;

e91.. x72*x48 + x6 + x112 - x178 =E= 0;

e92.. x73*x48 + x7 + x113 - x179 =E= 0;

e93.. x72*x49 + x6 + x114 - x180 =E= 0;

e94.. x73*x49 + x7 + x115 - x181 =E= 0;

e95.. x74*x50 + x8 + x116 - x174 =E= 0;

e96.. x75*x50 + x9 + x117 - x175 =E= 0;

e97.. x74*x51 + x8 + x118 - x176 =E= 0;

e98.. x75*x51 + x9 + x119 - x177 =E= 0;

e99.. x74*x52 + x8 + x120 - x178 =E= 0;

e100.. x75*x52 + x9 + x121 - x179 =E= 0;

e101.. x74*x53 + x8 + x122 - x180 =E= 0;

e102.. x75*x53 + x9 + x123 - x181 =E= 0;

e103.. x76*x54 + x10 + x124 - x174 =E= 0;

e104.. x77*x54 + x11 + x125 - x175 =E= 0;

e105.. x76*x55 + x10 + x126 - x176 =E= 0;

e106.. x77*x55 + x11 + x127 - x177 =E= 0;

e107.. x76*x56 + x10 + x128 - x178 =E= 0;

e108.. x77*x56 + x11 + x129 - x179 =E= 0;

e109.. x76*x57 + x10 + x130 - x180 =E= 0;

e110.. x77*x57 + x11 + x131 - x181 =E= 0;

e111.. x78*x58 + x12 + x132 - x174 =E= 0;

e112.. x79*x58 + x13 + x133 - x175 =E= 0;

e113.. x78*x59 + x12 + x134 - x176 =E= 0;

e114.. x79*x59 + x13 + x135 - x177 =E= 0;

e115.. x78*x60 + x12 + x136 - x178 =E= 0;

e116.. x79*x60 + x13 + x137 - x179 =E= 0;

e117.. x78*x61 + x12 + x138 - x180 =E= 0;

e118.. x79*x61 + x13 + x139 - x181 =E= 0;

e119.. x68*x62 + x2 + x140 - x160 =E= 0;

e120.. x69*x62 + x3 + x141 - x161 =E= 0;

e121.. x70*x63 + x4 + x142 - x162 =E= 0;

e122.. x71*x63 + x5 + x143 - x163 =E= 0;

e123.. x72*x64 + x6 + x144 - x164 =E= 0;

e124.. x73*x64 + x7 + x145 - x165 =E= 0;

e125.. x74*x65 + x8 + x146 - x166 =E= 0;

e126.. x75*x65 + x9 + x147 - x167 =E= 0;

e127.. x76*x66 + x10 + x148 - x168 =E= 0;

e128.. x77*x66 + x11 + x149 - x169 =E= 0;

e129.. x78*x67 + x12 + x150 - x170 =E= 0;

e130.. x79*x67 + x13 + x151 - x171 =E= 0;

e131.. -x14*x80 + x92 =E= 0;

e132.. -x14*x81 + x93 =E= 0;

e133.. -x15*x80 + x94 =E= 0;

e134.. -x15*x81 + x95 =E= 0;

e135.. -x16*x80 + x96 =E= 0;

e136.. -x16*x81 + x97 =E= 0;

e137.. -x17*x80 + x98 =E= 0;

e138.. -x17*x81 + x99 =E= 0;

e139.. -x18*x82 + x100 =E= 0;

e140.. -x18*x83 + x101 =E= 0;

e141.. -x19*x82 + x102 =E= 0;

e142.. -x19*x83 + x103 =E= 0;

e143.. -x20*x82 + x104 =E= 0;

e144.. -x20*x83 + x105 =E= 0;

e145.. -x21*x82 + x106 =E= 0;

e146.. -x21*x83 + x107 =E= 0;

e147.. -x22*x84 + x108 =E= 0;

e148.. -x22*x85 + x109 =E= 0;

e149.. -x23*x84 + x110 =E= 0;

e150.. -x23*x85 + x111 =E= 0;

e151.. -x24*x84 + x112 =E= 0;

e152.. -x24*x85 + x113 =E= 0;

e153.. -x25*x84 + x114 =E= 0;

e154.. -x25*x85 + x115 =E= 0;

e155.. -x26*x86 + x116 =E= 0;

e156.. -x26*x87 + x117 =E= 0;

e157.. -x27*x86 + x118 =E= 0;

e158.. -x27*x87 + x119 =E= 0;

e159.. -x28*x86 + x120 =E= 0;

e160.. -x28*x87 + x121 =E= 0;

e161.. -x29*x86 + x122 =E= 0;

e162.. -x29*x87 + x123 =E= 0;

e163.. -x30*x88 + x124 =E= 0;

e164.. -x30*x89 + x125 =E= 0;

e165.. -x31*x88 + x126 =E= 0;

e166.. -x31*x89 + x127 =E= 0;

e167.. -x32*x88 + x128 =E= 0;

e168.. -x32*x89 + x129 =E= 0;

e169.. -x33*x88 + x130 =E= 0;

e170.. -x33*x89 + x131 =E= 0;

e171.. -x34*x90 + x132 =E= 0;

e172.. -x34*x91 + x133 =E= 0;

e173.. -x35*x90 + x134 =E= 0;

e174.. -x35*x91 + x135 =E= 0;

e175.. -x36*x90 + x136 =E= 0;

e176.. -x36*x91 + x137 =E= 0;

e177.. -x37*x90 + x138 =E= 0;

e178.. -x37*x91 + x139 =E= 0;

e179..    1.2*x80 + x140 =E= 0;

e180..    1.2*x81 + x141 =E= 0;

e181..    0.6*x82 + x142 =E= 0;

e182..    0.6*x83 + x143 =E= 0;

e183..    0.8*x84 + x144 =E= 0;

e184..    0.8*x85 + x145 =E= 0;

e185..    1.7*x86 + x146 =E= 0;

e186..    1.7*x87 + x147 =E= 0;

e187..    1.3*x88 + x148 =E= 0;

e188..    1.3*x89 + x149 =E= 0;

e189..    0.5*x90 + x150 =E= 0;

e190..    0.5*x91 + x151 =E= 0;

e191..    x160 =L= 4.5;

e192..    x161 =L= 2;

* set non-default bounds
x1.lo = 2.89; x1.up = 36;
x2.up = 9;
x3.up = 4;
x4.up = 9;
x5.up = 4;
x6.up = 9;
x7.up = 4;
x8.up = 9;
x9.up = 4;
x10.up = 9;
x11.up = 4;
x12.up = 9;
x13.up = 4;
x14.up = 9.84885780179611;
x15.up = 9.84885780179611;
x16.up = 9.84885780179611;
x17.up = 9.84885780179611;
x18.up = 9.84885780179611;
x19.up = 9.84885780179611;
x20.up = 9.84885780179611;
x21.up = 9.84885780179611;
x22.up = 9.84885780179611;
x23.up = 9.84885780179611;
x24.up = 9.84885780179611;
x25.up = 9.84885780179611;
x26.up = 9.84885780179611;
x27.up = 9.84885780179611;
x28.up = 9.84885780179611;
x29.up = 9.84885780179611;
x30.up = 9.84885780179611;
x31.up = 9.84885780179611;
x32.up = 9.84885780179611;
x33.up = 9.84885780179611;
x34.up = 9.84885780179611;
x35.up = 9.84885780179611;
x36.up = 9.84885780179611;
x37.up = 9.84885780179611;
x38.lo = -9.84885780179611; x38.up = 9.84885780179611;
x39.lo = -9.84885780179611; x39.up = 9.84885780179611;
x40.lo = -9.84885780179611; x40.up = 9.84885780179611;
x41.lo = -9.84885780179611; x41.up = 9.84885780179611;
x42.lo = -9.84885780179611; x42.up = 9.84885780179611;
x43.lo = -9.84885780179611; x43.up = 9.84885780179611;
x44.lo = -9.84885780179611; x44.up = 9.84885780179611;
x45.lo = -9.84885780179611; x45.up = 9.84885780179611;
x46.lo = -9.84885780179611; x46.up = 9.84885780179611;
x47.lo = -9.84885780179611; x47.up = 9.84885780179611;
x48.lo = -9.84885780179611; x48.up = 9.84885780179611;
x49.lo = -9.84885780179611; x49.up = 9.84885780179611;
x50.lo = -9.84885780179611; x50.up = 9.84885780179611;
x51.lo = -9.84885780179611; x51.up = 9.84885780179611;
x52.lo = -9.84885780179611; x52.up = 9.84885780179611;
x53.lo = -9.84885780179611; x53.up = 9.84885780179611;
x54.lo = -9.84885780179611; x54.up = 9.84885780179611;
x55.lo = -9.84885780179611; x55.up = 9.84885780179611;
x56.lo = -9.84885780179611; x56.up = 9.84885780179611;
x57.lo = -9.84885780179611; x57.up = 9.84885780179611;
x58.lo = -9.84885780179611; x58.up = 9.84885780179611;
x59.lo = -9.84885780179611; x59.up = 9.84885780179611;
x60.lo = -9.84885780179611; x60.up = 9.84885780179611;
x61.lo = -9.84885780179611; x61.up = 9.84885780179611;
x62.lo = -9.84885780179611; x62.up = 9.84885780179611;
x63.lo = -9.84885780179611; x63.up = 9.84885780179611;
x64.lo = -9.84885780179611; x64.up = 9.84885780179611;
x65.lo = -9.84885780179611; x65.up = 9.84885780179611;
x66.lo = -9.84885780179611; x66.up = 9.84885780179611;
x67.lo = -9.84885780179611; x67.up = 9.84885780179611;
x68.lo = -1; x68.up = 1;
x69.lo = -1; x69.up = 1;
x70.lo = -1; x70.up = 1;
x71.lo = -1; x71.up = 1;
x72.lo = -1; x72.up = 1;
x73.lo = -1; x73.up = 1;
x74.lo = -1; x74.up = 1;
x75.lo = -1; x75.up = 1;
x76.lo = -1; x76.up = 1;
x77.lo = -1; x77.up = 1;
x78.lo = -1; x78.up = 1;
x79.lo = -1; x79.up = 1;
x80.lo = -1; x80.up = 1;
x81.lo = -1; x81.up = 1;
x82.lo = -1; x82.up = 1;
x83.lo = -1; x83.up = 1;
x84.lo = -1; x84.up = 1;
x85.lo = -1; x85.up = 1;
x86.lo = -1; x86.up = 1;
x87.lo = -1; x87.up = 1;
x88.lo = -1; x88.up = 1;
x89.lo = -1; x89.up = 1;
x90.lo = -1; x90.up = 1;
x91.lo = -1; x91.up = 1;
x92.lo = -9.84885780179611; x92.up = 9.84885780179611;
x93.lo = -9.84885780179611; x93.up = 9.84885780179611;
x94.lo = -9.84885780179611; x94.up = 9.84885780179611;
x95.lo = -9.84885780179611; x95.up = 9.84885780179611;
x96.lo = -9.84885780179611; x96.up = 9.84885780179611;
x97.lo = -9.84885780179611; x97.up = 9.84885780179611;
x98.lo = -9.84885780179611; x98.up = 9.84885780179611;
x99.lo = -9.84885780179611; x99.up = 9.84885780179611;
x100.lo = -9.84885780179611; x100.up = 9.84885780179611;
x101.lo = -9.84885780179611; x101.up = 9.84885780179611;
x102.lo = -9.84885780179611; x102.up = 9.84885780179611;
x103.lo = -9.84885780179611; x103.up = 9.84885780179611;
x104.lo = -9.84885780179611; x104.up = 9.84885780179611;
x105.lo = -9.84885780179611; x105.up = 9.84885780179611;
x106.lo = -9.84885780179611; x106.up = 9.84885780179611;
x107.lo = -9.84885780179611; x107.up = 9.84885780179611;
x108.lo = -9.84885780179611; x108.up = 9.84885780179611;
x109.lo = -9.84885780179611; x109.up = 9.84885780179611;
x110.lo = -9.84885780179611; x110.up = 9.84885780179611;
x111.lo = -9.84885780179611; x111.up = 9.84885780179611;
x112.lo = -9.84885780179611; x112.up = 9.84885780179611;
x113.lo = -9.84885780179611; x113.up = 9.84885780179611;
x114.lo = -9.84885780179611; x114.up = 9.84885780179611;
x115.lo = -9.84885780179611; x115.up = 9.84885780179611;
x116.lo = -9.84885780179611; x116.up = 9.84885780179611;
x117.lo = -9.84885780179611; x117.up = 9.84885780179611;
x118.lo = -9.84885780179611; x118.up = 9.84885780179611;
x119.lo = -9.84885780179611; x119.up = 9.84885780179611;
x120.lo = -9.84885780179611; x120.up = 9.84885780179611;
x121.lo = -9.84885780179611; x121.up = 9.84885780179611;
x122.lo = -9.84885780179611; x122.up = 9.84885780179611;
x123.lo = -9.84885780179611; x123.up = 9.84885780179611;
x124.lo = -9.84885780179611; x124.up = 9.84885780179611;
x125.lo = -9.84885780179611; x125.up = 9.84885780179611;
x126.lo = -9.84885780179611; x126.up = 9.84885780179611;
x127.lo = -9.84885780179611; x127.up = 9.84885780179611;
x128.lo = -9.84885780179611; x128.up = 9.84885780179611;
x129.lo = -9.84885780179611; x129.up = 9.84885780179611;
x130.lo = -9.84885780179611; x130.up = 9.84885780179611;
x131.lo = -9.84885780179611; x131.up = 9.84885780179611;
x132.lo = -9.84885780179611; x132.up = 9.84885780179611;
x133.lo = -9.84885780179611; x133.up = 9.84885780179611;
x134.lo = -9.84885780179611; x134.up = 9.84885780179611;
x135.lo = -9.84885780179611; x135.up = 9.84885780179611;
x136.lo = -9.84885780179611; x136.up = 9.84885780179611;
x137.lo = -9.84885780179611; x137.up = 9.84885780179611;
x138.lo = -9.84885780179611; x138.up = 9.84885780179611;
x139.lo = -9.84885780179611; x139.up = 9.84885780179611;
x140.lo = -9.84885780179611; x140.up = 9.84885780179611;
x141.lo = -9.84885780179611; x141.up = 9.84885780179611;
x142.lo = -9.84885780179611; x142.up = 9.84885780179611;
x143.lo = -9.84885780179611; x143.up = 9.84885780179611;
x144.lo = -9.84885780179611; x144.up = 9.84885780179611;
x145.lo = -9.84885780179611; x145.up = 9.84885780179611;
x146.lo = -9.84885780179611; x146.up = 9.84885780179611;
x147.lo = -9.84885780179611; x147.up = 9.84885780179611;
x148.lo = -9.84885780179611; x148.up = 9.84885780179611;
x149.lo = -9.84885780179611; x149.up = 9.84885780179611;
x150.lo = -9.84885780179611; x150.up = 9.84885780179611;
x151.lo = -9.84885780179611; x151.up = 9.84885780179611;
x152.lo = -0.8; x152.up = 0.8;
x153.lo = -0.5; x153.up = 0.5;
x154.lo = -0.8; x154.up = 0.8;
x155.lo = -0.5; x155.up = 0.5;
x156.lo = -0.8; x156.up = 0.8;
x157.lo = -0.5; x157.up = 0.5;
x158.lo = -0.8; x158.up = 0.8;
x159.lo = -0.5; x159.up = 0.5;
x160.lo = 1.2; x160.up = 7.8;
x161.lo = 1.2; x161.up = 2.8;
x162.lo = 0.6; x162.up = 8.4;
x163.lo = 0.6; x163.up = 3.4;
x164.lo = 0.8; x164.up = 8.2;
x165.lo = 0.8; x165.up = 3.2;
x166.lo = 1.7; x166.up = 7.3;
x167.lo = 1.7; x167.up = 2.3;
x168.lo = 1.3; x168.up = 7.7;
x169.lo = 1.3; x169.up = 2.7;
x170.lo = 0.5; x170.up = 8.5;
x171.lo = 0.5; x171.up = 3.5;
x172.up = 9;
x173.up = 4;
x174.up = 9;
x175.up = 4;
x176.up = 9;
x177.up = 4;
x178.up = 9;
x179.up = 4;
x180.up = 9;
x181.up = 4;
x182.up = 9;
x183.up = 4;
objvar.lo = 0; objvar.up = 36;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2022-08-11 Git hash: f176bd52
Imprint / Privacy Policy / License: CC-BY 4.0