MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kall_ellipsoids_tc03c
A set of tri-axial ellipsoids, with given semi-axes, is to be packed into a rectangular box; its widths, lengths and height are subject to lower and upper bounds. We want to minimize the volume of this box and seek an overlap-free placement of the ellipsoids which can take any orientation.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 36.45355823 (ANTIGONE) 18.97521963 (BARON) 18.97521963 (COUENNE) 18.97521963 (GUROBI) 18.97521963 (LINDO) 18.97521963 (SCIP) |
| Referencesⓘ | Kallrath, Josef, Packing ellipsoids into volume-minimizing rectangular boxes, Journal of Global Optimization, 2015. |
| Applicationⓘ | Geometry |
| Added to libraryⓘ | 26 Apr 2016 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 193 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 111 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 196 |
| #Linear Constraintsⓘ | 122 |
| #Quadratic Constraintsⓘ | 66 |
| #Polynomial Constraintsⓘ | 5 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 3 |
| Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 619 |
| #Nonlinear Nonzeros in Jacobianⓘ | 238 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 853 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 73 |
| #Blocks in Hessian of Lagrangianⓘ | 26 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 45 |
| Average blocksize in Hessian of Lagrangianⓘ | 4.269231 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.5000e-01 |
| Maximal coefficientⓘ | 3.0000e+00 |
| Infeasibility of initial pointⓘ | 10.98 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 197 170 5 22 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 194 194 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 621 383 238 0
*
* Solve m using NLP minimizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86
,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167
,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180
,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193
,x194;
Positive Variables x177,x178,x179,x180,x181,x182,x183,x184,x185,x186,x187
,x188,x189,x190,x191,x192,x193,x194;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197;
e1.. objvar - x155 =E= 0;
e2.. -x165*x166*x167 + x155 =E= 0;
e3.. x65*x69*x73 - x65*x70*x72 - x66*x68*x73 + x66*x71*x70 + x68*x67*x72 - x67*
x69*x71 =E= 1;
e4.. x74*x78*x82 - x74*x79*x81 - x75*x77*x82 + x75*x80*x79 + x77*x76*x81 - x76*
x78*x80 =E= 1;
e5.. x83*x87*x91 - x83*x88*x90 - x84*x86*x91 + x84*x89*x88 + x86*x85*x90 - x85*
x87*x89 =E= 1;
e6.. x101 + x102 + x103 =E= 1;
e7.. x104 + x105 + x106 =E= 0;
e8.. x107 + x108 + x109 =E= 0;
e9.. x110 + x111 + x112 =E= 1;
e10.. x113 + x114 + x115 =E= 0;
e11.. x116 + x117 + x118 =E= 1;
e12.. x119 + x120 + x121 =E= 1;
e13.. x122 + x123 + x124 =E= 0;
e14.. x125 + x126 + x127 =E= 0;
e15.. x128 + x129 + x130 =E= 1;
e16.. x131 + x132 + x133 =E= 0;
e17.. x134 + x135 + x136 =E= 1;
e18.. x137 + x138 + x139 =E= 1;
e19.. x140 + x141 + x142 =E= 0;
e20.. x143 + x144 + x145 =E= 0;
e21.. x146 + x147 + x148 =E= 1;
e22.. x149 + x150 + x151 =E= 0;
e23.. x152 + x153 + x154 =E= 1;
e24.. x38 - 0.25*x101 - 0.444444444444444*x102 - x103 =E= 0;
e25.. x39 - 0.25*x104 - 0.444444444444444*x105 - x106 =E= 0;
e26.. x40 - 0.25*x107 - 0.444444444444444*x108 - x109 =E= 0;
e27.. x42 - 0.25*x110 - 0.444444444444444*x111 - x112 =E= 0;
e28.. x43 - 0.25*x113 - 0.444444444444444*x114 - x115 =E= 0;
e29.. x46 - 0.25*x116 - 0.444444444444444*x117 - x118 =E= 0;
e30.. x47 - x119 - 1.5625*x120 - 2.77777777777778*x121 =E= 0;
e31.. x48 - x122 - 1.5625*x123 - 2.77777777777778*x124 =E= 0;
e32.. x49 - x125 - 1.5625*x126 - 2.77777777777778*x127 =E= 0;
e33.. x51 - x128 - 1.5625*x129 - 2.77777777777778*x130 =E= 0;
e34.. x52 - x131 - 1.5625*x132 - 2.77777777777778*x133 =E= 0;
e35.. x55 - x134 - 1.5625*x135 - 2.77777777777778*x136 =E= 0;
e36.. x56 - 0.444444444444444*x137 - x138 - 2.04081632653061*x139 =E= 0;
e37.. x57 - 0.444444444444444*x140 - x141 - 2.04081632653061*x142 =E= 0;
e38.. x58 - 0.444444444444444*x143 - x144 - 2.04081632653061*x145 =E= 0;
e39.. x60 - 0.444444444444444*x146 - x147 - 2.04081632653061*x148 =E= 0;
e40.. x61 - 0.444444444444444*x149 - x150 - 2.04081632653061*x151 =E= 0;
e41.. x64 - 0.444444444444444*x152 - x153 - 2.04081632653061*x154 =E= 0;
e42.. - x39 + x41 =E= 0;
e43.. - x40 + x44 =E= 0;
e44.. - x43 + x45 =E= 0;
e45.. - x48 + x50 =E= 0;
e46.. - x49 + x53 =E= 0;
e47.. - x52 + x54 =E= 0;
e48.. - x57 + x59 =E= 0;
e49.. - x58 + x62 =E= 0;
e50.. - x61 + x63 =E= 0;
e51.. - x165 + x168 =L= -1;
e52.. - x166 + x169 =L= -1;
e53.. - x167 + x170 =L= -1;
e54.. - x165 + x171 =L= -0.6;
e55.. - x166 + x172 =L= -0.6;
e56.. - x167 + x173 =L= -0.6;
e57.. - x165 + x174 =L= -0.7;
e58.. - x166 + x175 =L= -0.7;
e59.. - x167 + x176 =L= -0.7;
e60.. sqr(x156) - (x42*x46 - x43*x45) =E= 0;
e61.. sqr(x159) - (x51*x55 - x52*x54) =E= 0;
e62.. sqr(x162) - (x60*x64 - x61*x63) =E= 0;
e63.. sqr(x157) - (x38*x46 - x40*x44) =E= 0;
e64.. sqr(x160) - (x47*x55 - x49*x53) =E= 0;
e65.. sqr(x163) - (x56*x64 - x58*x62) =E= 0;
e66.. sqr(x158) - (x38*x42 - x39*x41) =E= 0;
e67.. sqr(x161) - (x47*x51 - x48*x50) =E= 0;
e68.. sqr(x164) - (x56*x60 - x57*x59) =E= 0;
e69.. 3*x156 - x168 + x177 =E= 0;
e70.. 3*x157 - x169 + x178 =E= 0;
e71.. 3*x158 - x170 + x179 =E= 0;
e72.. 0.48*x159 - x171 + x180 =E= 0;
e73.. 0.48*x160 - x172 + x181 =E= 0;
e74.. 0.48*x161 - x173 + x182 =E= 0;
e75.. 1.05*x162 - x174 + x183 =E= 0;
e76.. 1.05*x163 - x175 + x184 =E= 0;
e77.. 1.05*x164 - x176 + x185 =E= 0;
e78.. - 3*x156 - x168 + x186 =E= 0;
e79.. - 3*x157 - x169 + x187 =E= 0;
e80.. - 3*x158 - x170 + x188 =E= 0;
e81.. - 0.48*x159 - x171 + x189 =E= 0;
e82.. - 0.48*x160 - x172 + x190 =E= 0;
e83.. - 0.48*x161 - x173 + x191 =E= 0;
e84.. - 1.05*x162 - x174 + x192 =E= 0;
e85.. - 1.05*x163 - x175 + x193 =E= 0;
e86.. - 1.05*x164 - x176 + x194 =E= 0;
e87.. - x165 + x186 =L= 0;
e88.. - x166 + x187 =L= 0;
e89.. - x167 + x188 =L= 0;
e90.. - x165 + x189 =L= 0;
e91.. - x166 + x190 =L= 0;
e92.. - x167 + x191 =L= 0;
e93.. - x165 + x192 =L= 0;
e94.. - x166 + x193 =L= 0;
e95.. - x167 + x194 =L= 0;
e96.. x165 - x166 =G= 0;
e97.. x166 - x167 =G= 0;
e98.. - 0.5*x165 + x168 =L= 0;
e99.. - 0.5*x166 + x169 =L= 0;
e100.. - 0.5*x167 + x170 =L= 0;
e101.. sqr(x92) + sqr(x93) + sqr(x94) =E= 1;
e102.. sqr(x95) + sqr(x96) + sqr(x97) =E= 1;
e103.. sqr(x98) + sqr(x99) + sqr(x100) =E= 1;
e104.. -x65*x65 + x101 =E= 0;
e105.. -x66*x66 + x102 =E= 0;
e106.. -x67*x67 + x103 =E= 0;
e107.. -x65*x68 + x104 =E= 0;
e108.. -x66*x69 + x105 =E= 0;
e109.. -x67*x70 + x106 =E= 0;
e110.. -x65*x71 + x107 =E= 0;
e111.. -x66*x72 + x108 =E= 0;
e112.. -x67*x73 + x109 =E= 0;
e113.. -x68*x68 + x110 =E= 0;
e114.. -x69*x69 + x111 =E= 0;
e115.. -x70*x70 + x112 =E= 0;
e116.. -x68*x71 + x113 =E= 0;
e117.. -x69*x72 + x114 =E= 0;
e118.. -x70*x73 + x115 =E= 0;
e119.. -x71*x71 + x116 =E= 0;
e120.. -x72*x72 + x117 =E= 0;
e121.. -x73*x73 + x118 =E= 0;
e122.. -x74*x74 + x119 =E= 0;
e123.. -x75*x75 + x120 =E= 0;
e124.. -x76*x76 + x121 =E= 0;
e125.. -x74*x77 + x122 =E= 0;
e126.. -x75*x78 + x123 =E= 0;
e127.. -x76*x79 + x124 =E= 0;
e128.. -x74*x80 + x125 =E= 0;
e129.. -x75*x81 + x126 =E= 0;
e130.. -x76*x82 + x127 =E= 0;
e131.. -x77*x77 + x128 =E= 0;
e132.. -x78*x78 + x129 =E= 0;
e133.. -x79*x79 + x130 =E= 0;
e134.. -x77*x80 + x131 =E= 0;
e135.. -x78*x81 + x132 =E= 0;
e136.. -x79*x82 + x133 =E= 0;
e137.. -x80*x80 + x134 =E= 0;
e138.. -x81*x81 + x135 =E= 0;
e139.. -x82*x82 + x136 =E= 0;
e140.. -x83*x83 + x137 =E= 0;
e141.. -x84*x84 + x138 =E= 0;
e142.. -x85*x85 + x139 =E= 0;
e143.. -x83*x86 + x140 =E= 0;
e144.. -x84*x87 + x141 =E= 0;
e145.. -x85*x88 + x142 =E= 0;
e146.. -x83*x89 + x143 =E= 0;
e147.. -x84*x90 + x144 =E= 0;
e148.. -x85*x91 + x145 =E= 0;
e149.. -x86*x86 + x146 =E= 0;
e150.. -x87*x87 + x147 =E= 0;
e151.. -x88*x88 + x148 =E= 0;
e152.. -x86*x89 + x149 =E= 0;
e153.. -x87*x90 + x150 =E= 0;
e154.. -x88*x91 + x151 =E= 0;
e155.. -x89*x89 + x152 =E= 0;
e156.. -x90*x90 + x153 =E= 0;
e157.. -x91*x91 + x154 =E= 0;
e158.. POWER(x167,3) - x155 =L= 0;
e159.. x29 - x168 + x171 =E= 0;
e160.. x30 - x169 + x172 =E= 0;
e161.. x31 - x170 + x173 =E= 0;
e162.. x32 - x168 + x174 =E= 0;
e163.. x33 - x169 + x175 =E= 0;
e164.. x34 - x170 + x176 =E= 0;
e165.. x35 - x171 + x174 =E= 0;
e166.. x36 - x172 + x175 =E= 0;
e167.. x37 - x173 + x176 =E= 0;
e168.. x92*x29 + x93*x30 + x94*x31 - (sqrt(sqr(x2*x92) + sqr(x5*x93) + sqr(x8*
x94) + sqr(x3*x92) + sqr(x6*x93) + sqr(x9*x94) + sqr(x4*x92) + sqr(x7*
x93) + sqr(x10*x94)) + sqrt(sqr(x11*x92) + sqr(x14*x93) + sqr(x17*x94)
+ sqr(x12*x92) + sqr(x15*x93) + sqr(x18*x94) + sqr(x13*x92) + sqr(x16*
x93) + sqr(x19*x94))) =G= 0;
e169.. x95*x32 + x96*x33 + x97*x34 - (sqrt(sqr(x2*x95) + sqr(x5*x96) + sqr(x8*
x97) + sqr(x3*x95) + sqr(x6*x96) + sqr(x9*x97) + sqr(x4*x95) + sqr(x7*
x96) + sqr(x10*x97)) + sqrt(sqr(x20*x95) + sqr(x23*x96) + sqr(x26*x97)
+ sqr(x21*x95) + sqr(x24*x96) + sqr(x27*x97) + sqr(x22*x95) + sqr(x25*
x96) + sqr(x28*x97))) =G= 0;
e170.. x98*x35 + x99*x36 + x100*x37 - (sqrt(sqr(x11*x98) + sqr(x14*x99) + sqr(
x17*x100) + sqr(x12*x98) + sqr(x15*x99) + sqr(x18*x100) + sqr(x13*x98)
+ sqr(x16*x99) + sqr(x19*x100)) + sqrt(sqr(x20*x98) + sqr(x23*x99) +
sqr(x26*x100) + sqr(x21*x98) + sqr(x24*x99) + sqr(x27*x100) + sqr(x22*
x98) + sqr(x25*x99) + sqr(x28*x100))) =G= 0;
e171.. x2 - 2*x65 =E= 0;
e172.. x3 - 1.5*x66 =E= 0;
e173.. x4 - x67 =E= 0;
e174.. x5 - 2*x68 =E= 0;
e175.. x6 - 1.5*x69 =E= 0;
e176.. x7 - x70 =E= 0;
e177.. x8 - 2*x71 =E= 0;
e178.. x9 - 1.5*x72 =E= 0;
e179.. x10 - x73 =E= 0;
e180.. x11 - x74 =E= 0;
e181.. x12 - 0.8*x75 =E= 0;
e182.. x13 - 0.6*x76 =E= 0;
e183.. x14 - x77 =E= 0;
e184.. x15 - 0.8*x78 =E= 0;
e185.. x16 - 0.6*x79 =E= 0;
e186.. x17 - x80 =E= 0;
e187.. x18 - 0.8*x81 =E= 0;
e188.. x19 - 0.6*x82 =E= 0;
e189.. x20 - 1.5*x83 =E= 0;
e190.. x21 - x84 =E= 0;
e191.. x22 - 0.7*x85 =E= 0;
e192.. x23 - 1.5*x86 =E= 0;
e193.. x24 - x87 =E= 0;
e194.. x25 - 0.7*x88 =E= 0;
e195.. x26 - 1.5*x89 =E= 0;
e196.. x27 - x90 =E= 0;
e197.. x28 - 0.7*x91 =E= 0;
* set non-default bounds
x38.lo = -1.69454444444444; x38.up = 1.69454444444444;
x39.lo = -1.69454444444444; x39.up = 1.69454444444444;
x40.lo = -1.69454444444444; x40.up = 1.69454444444444;
x41.lo = -1.69444444444444; x41.up = 1.69444444444444;
x42.lo = -1.69454444444444; x42.up = 1.69454444444444;
x43.lo = -1.69454444444444; x43.up = 1.69454444444444;
x44.lo = -1.69444444444444; x44.up = 1.69444444444444;
x45.lo = -1.69444444444444; x45.up = 1.69444444444444;
x46.lo = -1.69454444444444; x46.up = 1.69454444444444;
x47.lo = -5.34037777777778; x47.up = 5.34037777777778;
x48.lo = -5.34037777777778; x48.up = 5.34037777777778;
x49.lo = -5.34037777777778; x49.up = 5.34037777777778;
x50.lo = -5.34027777777778; x50.up = 5.34027777777778;
x51.lo = -5.34037777777778; x51.up = 5.34037777777778;
x52.lo = -5.34037777777778; x52.up = 5.34037777777778;
x53.lo = -5.34027777777778; x53.up = 5.34027777777778;
x54.lo = -5.34027777777778; x54.up = 5.34027777777778;
x55.lo = -5.34037777777778; x55.up = 5.34037777777778;
x56.lo = -3.48536077097506; x56.up = 3.48536077097506;
x57.lo = -3.48536077097506; x57.up = 3.48536077097506;
x58.lo = -3.48536077097506; x58.up = 3.48536077097506;
x59.lo = -3.48526077097506; x59.up = 3.48526077097506;
x60.lo = -3.48536077097506; x60.up = 3.48536077097506;
x61.lo = -3.48536077097506; x61.up = 3.48536077097506;
x62.lo = -3.48526077097506; x62.up = 3.48526077097506;
x63.lo = -3.48526077097506; x63.up = 3.48526077097506;
x64.lo = -3.48536077097506; x64.up = 3.48536077097506;
x65.lo = -1; x65.up = 1;
x66.lo = -1; x66.up = 1;
x67.lo = -1; x67.up = 1;
x68.lo = -1; x68.up = 1;
x69.lo = -1; x69.up = 1;
x70.lo = -1; x70.up = 1;
x71.lo = -1; x71.up = 1;
x72.lo = -1; x72.up = 1;
x73.lo = -1; x73.up = 1;
x74.lo = -1; x74.up = 1;
x75.lo = -1; x75.up = 1;
x76.lo = -1; x76.up = 1;
x77.lo = -1; x77.up = 1;
x78.lo = -1; x78.up = 1;
x79.lo = -1; x79.up = 1;
x80.lo = -1; x80.up = 1;
x81.lo = -1; x81.up = 1;
x82.lo = -1; x82.up = 1;
x83.lo = -1; x83.up = 1;
x84.lo = -1; x84.up = 1;
x85.lo = -1; x85.up = 1;
x86.lo = -1; x86.up = 1;
x87.lo = -1; x87.up = 1;
x88.lo = -1; x88.up = 1;
x89.lo = -1; x89.up = 1;
x90.lo = -1; x90.up = 1;
x91.lo = -1; x91.up = 1;
x92.lo = -1; x92.up = 1;
x93.lo = -1; x93.up = 1;
x94.lo = -1; x94.up = 1;
x95.lo = -1; x95.up = 1;
x96.lo = -1; x96.up = 1;
x97.lo = -1; x97.up = 1;
x98.lo = -1; x98.up = 1;
x99.lo = -1; x99.up = 1;
x100.lo = -1; x100.up = 1;
x101.lo = -1; x101.up = 1;
x102.lo = -1; x102.up = 1;
x103.lo = -1; x103.up = 1;
x104.lo = -1; x104.up = 1;
x105.lo = -1; x105.up = 1;
x106.lo = -1; x106.up = 1;
x107.lo = -1; x107.up = 1;
x108.lo = -1; x108.up = 1;
x109.lo = -1; x109.up = 1;
x110.lo = -1; x110.up = 1;
x111.lo = -1; x111.up = 1;
x112.lo = -1; x112.up = 1;
x113.lo = -1; x113.up = 1;
x114.lo = -1; x114.up = 1;
x115.lo = -1; x115.up = 1;
x116.lo = -1; x116.up = 1;
x117.lo = -1; x117.up = 1;
x118.lo = -1; x118.up = 1;
x119.lo = -1; x119.up = 1;
x120.lo = -1; x120.up = 1;
x121.lo = -1; x121.up = 1;
x122.lo = -1; x122.up = 1;
x123.lo = -1; x123.up = 1;
x124.lo = -1; x124.up = 1;
x125.lo = -1; x125.up = 1;
x126.lo = -1; x126.up = 1;
x127.lo = -1; x127.up = 1;
x128.lo = -1; x128.up = 1;
x129.lo = -1; x129.up = 1;
x130.lo = -1; x130.up = 1;
x131.lo = -1; x131.up = 1;
x132.lo = -1; x132.up = 1;
x133.lo = -1; x133.up = 1;
x134.lo = -1; x134.up = 1;
x135.lo = -1; x135.up = 1;
x136.lo = -1; x136.up = 1;
x137.lo = -1; x137.up = 1;
x138.lo = -1; x138.up = 1;
x139.lo = -1; x139.up = 1;
x140.lo = -1; x140.up = 1;
x141.lo = -1; x141.up = 1;
x142.lo = -1; x142.up = 1;
x143.lo = -1; x143.up = 1;
x144.lo = -1; x144.up = 1;
x145.lo = -1; x145.up = 1;
x146.lo = -1; x146.up = 1;
x147.lo = -1; x147.up = 1;
x148.lo = -1; x148.up = 1;
x149.lo = -1; x149.up = 1;
x150.lo = -1; x150.up = 1;
x151.lo = -1; x151.up = 1;
x152.lo = -1; x152.up = 1;
x153.lo = -1; x153.up = 1;
x154.lo = -1; x154.up = 1;
x155.lo = 18.9752196276824;
x156.lo = 0.333333333333333; x156.up = 0.666666666666667;
x157.lo = 0.333333333333333; x157.up = 0.666666666666667;
x158.lo = 0.333333333333333; x158.up = 0.666666666666667;
x159.lo = 1.25; x159.up = 2.08333333333333;
x160.lo = 1.25; x160.up = 2.08333333333333;
x161.lo = 1.25; x161.up = 2.08333333333333;
x162.lo = 0.666666666666667; x162.up = 1.42857142857143;
x163.lo = 0.666666666666667; x163.up = 1.42857142857143;
x164.lo = 0.666666666666667; x164.up = 1.42857142857143;
x165.lo = 2; x165.up = 9;
x166.lo = 2; x166.up = 9;
x167.lo = 2; x167.up = 9;
x168.lo = 1; x168.up = 8;
x169.lo = 1; x169.up = 8;
x170.lo = 1; x170.up = 8;
x171.lo = 0.6; x171.up = 8.4;
x172.lo = 0.6; x172.up = 8.4;
x173.lo = 0.6; x173.up = 8.4;
x174.lo = 0.7; x174.up = 8.3;
x175.lo = 0.7; x175.up = 8.3;
x176.lo = 0.7; x176.up = 8.3;
x177.up = 20;
x178.up = 10;
x179.up = 10;
x180.up = 20;
x181.up = 10;
x182.up = 10;
x183.up = 20;
x184.up = 10;
x185.up = 10;
x186.up = 20;
x187.up = 10;
x188.up = 10;
x189.up = 20;
x190.up = 10;
x191.up = 10;
x192.up = 20;
x193.up = 10;
x194.up = 10;
* set non-default levels
x65.l = 1;
x69.l = 1;
x73.l = 1;
x74.l = 1;
x78.l = 1;
x82.l = 1;
x83.l = 1;
x87.l = 1;
x91.l = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

