MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Removed Instance korcge

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)  
Other points (infeas > 1e-08)  
Dual Bounds  
References Lewis, J and Robinson, S, Chapter 11. In Chenery, Hollis B, Robinson, Sherman, and Syrquin, Moshe, Eds, Industrialization and Growth: A Comparative Study, Oxford University Press, London, 1986.
Source GAMS Model Library model korcge
Application General Equilibrium
Added to library 31 Jul 2001
Removed from library 14 Aug 2014
Removed because Optimization variant of korcns, but having only one solution
Problem type NLP
#Variables 95
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 71
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type signomial
Objective curvature convex
#Nonzeros in Objective 3
#Nonlinear Nonzeros in Objective 3
#Constraints 77
#Linear Constraints 34
#Quadratic Constraints 27
#Polynomial Constraints 1
#Signomial Constraints 10
#General Nonlinear Constraints 5
Operands in Gen. Nonlin. Functions vcpower
Constraints curvature indefinite
#Nonzeros in Jacobian 342
#Nonlinear Nonzeros in Jacobian 197
#Nonzeros in (Upper-Left) Hessian of Lagrangian 173
#Nonzeros in Diagonal of Hessian of Lagrangian 29
#Blocks in Hessian of Lagrangian 11
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 23
Average blocksize in Hessian of Lagrangian 6.454545
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-05
Maximal coefficient 3.8542e+00
Infeasibility of initial point 5.666

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         78       78        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         96       96        0        0        0        0        0        0
*  FX     18       18        0        0        0        0        0        0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        346      146      200        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,objvar;

Positive Variables  x51,x52,x54,x55,x91;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78;


e1.. -0.90909*x1*(1.1 + x23) + x5 =E= 0;

e2.. -0.81466*x1*(1.22751 + x23) + x6 =E= 0;

e3.. -0.92521*x1*(1.08084 + x23) + x7 =E= 0;

e4..  - x1 + x8 =E= 0;

e5..  - x1 + x9 =E= 0;

e6..  - x1 + x10 =E= 0;

e7.. x17*x25 - (x2*x31 + x5*x37) =E= 0;

e8.. x18*x26 - (x3*x32 + x6*x38) =E= 0;

e9.. x19*x27 - (x4*x33 + x7*x39) =E= 0;

e10.. x14*x28 - (x2*x31 + x8*x34) =E= 0;

e11.. x15*x29 - (x3*x32 + x9*x35) =E= 0;

e12.. x16*x30 - (x4*x33 + x10*x36) =E= 0;

e13..    0.99*x14 - 0.12591*x17 - 0.10353*x18 - 0.02358*x19 - x20 =E= 0;

e14..    0.9608*x15 - 0.19834*x17 - 0.35524*x18 - 0.11608*x19 - x21 =E= 0;

e15..    0.95*x16 - 0.01407*x17 - 0.18954*x18 - 0.0839*x19 - x22 =E= 0;

e16..    x11 - 0.93076*x18 - 0.06924*x19 =E= 0;

e17..    x12 - 0.93774*x18 - 0.06226*x19 =E= 0;

e18..    x13 - 0.9308*x18 - 0.0692*x19 =E= 0;

e19..  - 0.33263*x17 - 0.43486*x18 - 0.23251*x19 + x24 =E= 0;

e20.. -0.61447*x49**0.38258*x50**0.0674*x40**0.55002 + x28 =E= 0;

e21.. -1.60111*x53**0.53476*x41**0.46524 + x29 =E= 0;

e22.. -0.52019*x56**0.16234*x57**0.42326*x42**0.4144 + x30 =E= 0;

e23.. x43*x49 - 0.38258*x28*x20 =E= 0;

e24.. 0.5278*x44*x50 - 0.0674*x28*x20 =E= 0;

e25.. 1.21879*x44*x53 - 0.53476*x29*x21 =E= 0;

e26.. 1.11541*x44*x56 - 0.16234*x30*x22 =E= 0;

e27.. x45*x57 - 0.42326*x30*x22 =E= 0;

e28..  - x46 + x49 + x52 + x55 =E= 0;

e29..  - x47 + x50 + x53 + x56 =E= 0;

e30..  - x48 + x51 + x54 + x57 =E= 0;

e31.. -3.85424*(0.86628*x34**1.5 + 0.13372*x31**1.5)**0.666666666666667 + x28
       =E= 0;

e32.. -3.51886*(0.84602*x35**1.5 + 0.15398*x32**1.5)**0.666666666666667 + x29
       =E= 0;

e33.. -3.23592*(0.82436*x36**1.5 + 0.17564*x33**1.5)**0.666666666666667 + x30
       =E= 0;

e34.. x34/x31 - sqr(0.154361176524911*x8/x2) =E= 0;

e35.. x35/x32 - sqr(0.182005153542469*x9/x3) =E= 0;

e36.. x36/x33 - sqr(0.213062254354893*x10/x4) =E= 0;

e37.. -1.59539*sqr(0.2482*x37**0.5 + 0.7518*x31**0.5) + x25 =E= 0;

e38.. -1.34652*(0.05111*x38**(-0.515151515151515) + 0.94889*x32**(-
      0.515151515151515))**(-1.94117647058824) + x26 =E= 0;

e39.. -1.01839*(1e-5*x39**(-1.5) + 0.99999*x33**(-1.5))**(-0.666666666666667)
       + x27 =E= 0;

e40.. x37/x31 - sqr(0.330140994945464*x2/x5) =E= 0;

e41.. x38/x32 - (0.0538629345867277*x3/x6)**0.66 =E= 0;

e42.. x39/x33 - (1.0000100001e-5*x4/x7)**0.4 =E= 0;

e43..  - 0.12591*x28 - 0.19834*x29 - 0.01407*x30 + x58 =E= 0;

e44..  - 0.10353*x28 - 0.35524*x29 - 0.18954*x30 + x59 =E= 0;

e45..  - 0.02358*x28 - 0.11608*x29 - 0.0839*x30 + x60 =E= 0;

e46.. x17*x61 - ((0.428123 - 0.428123*x84)*x93 + (0.428123 - 0.428123*x85)*x94)
       =E= 0;

e47.. x18*x62 - ((0.291478891 - 0.291478891*x84)*x93 + (0.291478891 - 
      0.291478891*x85)*x94) =E= 0;

e48.. x19*x63 - ((0.191298109 - 0.191298109*x84)*x93 + (0.191298109 - 
      0.191298109*x85)*x94) =E= 0;

e49..    x70 =E= 0;

e50..    x71 =E= 0;

e51..    x72 =E= 0;

e52..    x73 - x93 - x94 =E= 0;

e53.. -(x43*x46 + x44*x47 + x45*x48 + x91*x1) + x93 =E= 0;

e54.. -(x20*x28 + x21*x29 + x22*x30 - (x43*x46 + x44*x47 + x45*x48) + x92*x1)
       + x81 - x90 + x94 =E= 0;

e55..  - 0.0891*x93 - 0.0891*x94 + x95 =E= 0;

e56..    x64 - 0.02*x78 =E= 0;

e57..    x65 - 0.07*x78 =E= 0;

e58..    x66 - 0.91*x78 =E= 0;

e59..    x74 - x75 - x76 + x77 - x95 =E= 0;

e60.. -(0.090909*x37 + 0.1853432966*x38 + 0.0747939764*x39)*x1 + x75 =E= 0;

e61.. -(0.90909*x37 + 0.81466*x38 + 0.92521*x39)*x1*x23 + x90 =E= 0;

e62.. -(0.01*x14*x28 + 0.0392*x15*x29 + 0.05*x16*x30) + x76 =E= 0;

e63..    x77 =E= 0;

e64.. -(0.9109*x84*x93 + 0.9109*x85*x94) + x79 =E= 0;

e65.. -(x17*x64 + x18*x65 + x19*x66) + x74 - x80 =E= 0;

e66..    x81 =E= 0;

e67.. -x86*x1 - x79 - x80 - x81 + x83 =E= 0;

e68.. x11*x87 + 0.13*(x70*x17 + x71*x18 + x72*x19) - 0.13*x82 =E= 0;

e69.. x12*x88 + 0.29*(x70*x17 + x71*x18 + x72*x19) - 0.29*x82 =E= 0;

e70.. x13*x89 + 0.58*(x70*x17 + x71*x18 + x72*x19) - 0.58*x82 =E= 0;

e71..    x67 =E= 0;

e72..    x68 - 0.93076*x87 - 0.93774*x88 - 0.9308*x89 =E= 0;

e73..    x69 - 0.06924*x87 - 0.06226*x88 - 0.0692*x89 =E= 0;

e74..  - x34 - x35 - x36 + 0.90909*x37 + 0.81466*x38 + 0.92521*x39 - x86 - x91
       - x92 =E= 0;

e75..    x25 - x58 - x61 - x64 - x67 - x70 =E= 0;

e76..    x26 - x59 - x62 - x65 - x68 - x71 =E= 0;

e77..    x27 - x60 - x63 - x66 - x69 - x72 =E= 0;

e78.. -x61**0.47*x62**0.31999*x63**0.21001 - objvar =E= 0;

* set non-default bounds
x1.fx = 1;
x2.lo = 0.01;
x3.lo = 0.01;
x4.lo = 0.01;
x5.lo = 0.01;
x6.lo = 0.01;
x7.lo = 0.01;
x11.lo = 0.01;
x12.lo = 0.01;
x13.lo = 0.01;
x14.lo = 0.01;
x15.lo = 0.01;
x16.lo = 0.01;
x17.lo = 0.01;
x18.lo = 0.01;
x19.lo = 0.01;
x24.fx = 1;
x25.lo = 0.01;
x26.lo = 0.01;
x27.lo = 0.01;
x28.lo = 0.01;
x29.lo = 0.01;
x30.lo = 0.01;
x31.lo = 0.01;
x32.lo = 0.01;
x33.lo = 0.01;
x34.lo = 0.01;
x35.lo = 0.01;
x36.lo = 0.01;
x37.lo = 0.01;
x38.lo = 0.01;
x39.lo = 0.01;
x40.fx = 657.5754;
x41.fx = 338.7076;
x42.fx = 1548.5192;
x43.lo = 0.01;
x44.lo = 0.01;
x45.lo = 0.01;
x46.fx = 2515.9;
x47.fx = 1565.987;
x48.fx = 948.1;
x49.lo = 0.01;
x50.lo = 0.01;
x51.fx = 0;
x52.fx = 0;
x53.lo = 0.01;
x54.fx = 0;
x55.fx = 0;
x56.lo = 0.01;
x57.lo = 0.01;
x58.lo = 0.01;
x59.lo = 0.01;
x60.lo = 0.01;
x73.lo = 0.01;
x78.fx = 141.1519;
x84.fx = 0.06;
x85.fx = 0.06;
x86.fx = 39.1744;
x91.fx = 0;
x92.fx = 58.759;

* set non-default levels
x2.l = 1;
x3.l = 1;
x4.l = 1;
x5.l = 1;
x6.l = 1;
x7.l = 1;
x8.l = 1;
x9.l = 1;
x10.l = 1;
x11.l = 1;
x12.l = 1;
x13.l = 1;
x14.l = 1;
x15.l = 1;
x16.l = 1;
x17.l = 1;
x18.l = 1;
x19.l = 1;
x20.l = 0.737;
x21.l = 0.2911;
x22.l = 0.6625;
x25.l = 711.6443;
x26.l = 930.3509;
x27.l = 497.4428;
x28.l = 657.3677;
x29.l = 840.05;
x30.l = 515.4296;
x31.l = 641.7037;
x32.l = 812.2222;
x33.l = 492.0307;
x34.l = 15.6639;
x35.l = 27.8278;
x36.l = 23.3988;
x37.l = 69.9406;
x38.l = 118.1287;
x39.l = 5.412;
x43.l = 0.074;
x44.l = 0.14;
x45.l = 0.152;
x49.l = 2515.9;
x50.l = 442.643;
x53.l = 767.776;
x56.l = 355.568;
x57.l = 948.1;
x58.l = 256.645;
x59.l = 464.1656;
x60.l = 156.2598;
x61.l = 452.1765;
x62.l = 307.8561;
x63.l = 202.0416;
x64.l = 2.823;
x65.l = 9.8806;
x66.l = 128.4482;
x68.l = 148.4488;
x69.l = 10.6931;
x73.l = 1123.5941;
x74.l = 194.0449;
x75.l = 28.6572;
x76.l = 65.2754;
x79.l = 61.4089;
x80.l = 52.893;
x82.l = 159.1419;
x83.l = 159.1419;
x87.l = 20.6884;
x88.l = 46.1511;
x89.l = 92.3023;
x93.l = 548.7478;
x94.l = 574.8463;
x95.l = 100.1122;

Model m / all /;

m.limrow=0; m.limcol=0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2022-08-11 Git hash: f176bd52
Imprint / Privacy Policy / License: CC-BY 4.0