MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kriging_peaks-full010
Gaussian process regression for the peaks functions using 10 datapoints. This is the full-space formulation where intermediate variables are defined by additional constraints.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.29112078 (ANTIGONE) 0.29108221 (BARON) 0.29112068 (LINDO) 0.29111461 (SCIP) |
Referencesⓘ | Schweidtmann, Artur M., Bongartz, Dominik, Grothe, Daniel, Kerkenhoff, Tim, Lin, Xiaopeng, Najman, Jaromil, and Mitsos, Alexander, Deterministic global optimization with Gaussian processes embedded, Mathematical Programming Computation, 13:3, 2021, 553-581. |
Applicationⓘ | Kriging |
Added to libraryⓘ | 11 Dec 2020 |
Problem typeⓘ | NLP |
#Variablesⓘ | 26 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 12 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 24 |
#Linear Constraintsⓘ | 4 |
#Quadratic Constraintsⓘ | 10 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 10 |
Operands in Gen. Nonlin. Functionsⓘ | exp mul sqrt |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 67 |
#Nonlinear Nonzeros in Jacobianⓘ | 30 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 12 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 12 |
#Blocks in Hessian of Lagrangianⓘ | 12 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.4807e-02 |
Maximal coefficientⓘ | 6.4256e+01 |
Infeasibility of initial pointⓘ | 54.01 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 25 25 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 27 27 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 69 39 30 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,objvar; Positive Variables x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20 ,x21,x22,x23,x24; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25; e1.. - x26 + objvar =E= 0; e2.. 0.166666666666667*x1 - x3 =E= -0.5; e3.. 0.166666666666667*x2 - x4 =E= -0.5; e4.. 64.2558879895505*sqr(0.694030125231034 - x3) + 0.451453304154821*sqr( 0.095158202540104 - x4) - x5 =E= 0; e5.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x5) + 1.66666666666667*x5)* exp(-2.23606797749979*sqrt(x5)) - x6 =E= 0; e6.. 64.2558879895505*sqr(0.768324435572052 - x3) + 0.451453304154821*sqr( 0.279169765904797 - x4) - x7 =E= 0; e7.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x7) + 1.66666666666667*x7)* exp(-2.23606797749979*sqrt(x7)) - x8 =E= 0; e8.. 64.2558879895505*sqr(0.449417796221557 - x3) + 0.451453304154821*sqr( 0.690399166851636 - x4) - x9 =E= 0; e9.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x9) + 1.66666666666667*x9)* exp(-2.23606797749979*sqrt(x9)) - x10 =E= 0; e10.. 64.2558879895505*sqr(0.835653234585859 - x3) + 0.451453304154821*sqr( 0.819274707641782 - x4) - x11 =E= 0; e11.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x11) + 1.66666666666667*x11) *exp(-2.23606797749979*sqrt(x11)) - x12 =E= 0; e12.. 64.2558879895505*sqr(0.916115262788179 - x3) + 0.451453304154821*sqr( 0.417060019884486 - x4) - x13 =E= 0; e13.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x13) + 1.66666666666667*x13) *exp(-2.23606797749979*sqrt(x13)) - x14 =E= 0; e14.. 64.2558879895505*sqr(0.175655940777394 - x3) + 0.451453304154821*sqr( 0.577517381141589 - x4) - x15 =E= 0; e15.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x15) + 1.66666666666667*x15) *exp(-2.23606797749979*sqrt(x15)) - x16 =E= 0; e16.. 64.2558879895505*sqr(0.210585980433571 - x3) + 0.451453304154821*sqr( 0.162363431410791 - x4) - x17 =E= 0; e17.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x17) + 1.66666666666667*x17) *exp(-2.23606797749979*sqrt(x17)) - x18 =E= 0; e18.. 64.2558879895505*sqr(0.379111099961924 - x3) + 0.451453304154821*sqr( 0.374896738086211 - x4) - x19 =E= 0; e19.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x19) + 1.66666666666667*x19) *exp(-2.23606797749979*sqrt(x19)) - x20 =E= 0; e20.. 64.2558879895505*sqr(0.58269047049772 - x3) + 0.451453304154821*sqr( 0.958984274331446 - x4) - x21 =E= 0; e21.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x21) + 1.66666666666667*x21) *exp(-2.23606797749979*sqrt(x21)) - x22 =E= 0; e22.. 64.2558879895505*sqr(0.064807191405694 - x3) + 0.451453304154821*sqr( 0.720400711043696 - x4) - x23 =E= 0; e23.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x23) + 1.66666666666667*x23) *exp(-2.23606797749979*sqrt(x23)) - x24 =E= 0; e24.. - 0.554050919391022*x6 - 0.182361458467212*x8 + 1.70198363249747*x10 - 0.15810145595015*x12 - 0.149505342468411*x14 - 0.88102258631443*x16 - 0.215467740313008*x18 + 0.85857179829172*x20 - 0.171283188932011*x22 - 0.218571179976833*x24 - x25 =E= 0; e25.. 1.86360571672641*x25 - x26 =E= -0.727377686265491; * set non-default bounds x1.lo = -3; x1.up = 3; x2.lo = -3; x2.up = 3; x3.lo = -1; x3.up = 1; x4.lo = -1; x4.up = 1; x5.up = 10000000; x6.up = 10000000; x7.up = 10000000; x8.up = 10000000; x9.up = 10000000; x10.up = 10000000; x11.up = 10000000; x12.up = 10000000; x13.up = 10000000; x14.up = 10000000; x15.up = 10000000; x16.up = 10000000; x17.up = 10000000; x18.up = 10000000; x19.up = 10000000; x20.up = 10000000; x21.up = 10000000; x22.up = 10000000; x23.up = 10000000; x24.up = 10000000; x25.lo = -10000000; x25.up = 10000000; x26.lo = -10000000; x26.up = 10000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f