MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kriging_peaks-full030
Gaussian process regression for the peaks functions using 30 datapoints. This is the full-space formulation where intermediate variables are defined by additional constraints.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1.58660398 (ANTIGONE) -1.58674659 (BARON) -1.58658792 (LINDO) -1.58659973 (SCIP) |
Referencesⓘ | Schweidtmann, Artur M., Bongartz, Dominik, Grothe, Daniel, Kerkenhoff, Tim, Lin, Xiaopeng, Najman, Jaromil, and Mitsos, Alexander, Deterministic global optimization with Gaussian processes embedded, Mathematical Programming Computation, 13:3, 2021, 553-581. |
Applicationⓘ | Kriging |
Added to libraryⓘ | 11 Dec 2020 |
Problem typeⓘ | NLP |
#Variablesⓘ | 66 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 32 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 64 |
#Linear Constraintsⓘ | 4 |
#Quadratic Constraintsⓘ | 30 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 30 |
Operands in Gen. Nonlin. Functionsⓘ | exp mul sqrt |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 187 |
#Nonlinear Nonzeros in Jacobianⓘ | 90 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 32 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 32 |
#Blocks in Hessian of Lagrangianⓘ | 32 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 9.2316e-03 |
Maximal coefficientⓘ | 3.2718e+01 |
Infeasibility of initial pointⓘ | 53.64 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 65 65 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 67 67 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 189 99 90 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,objvar; Positive Variables x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20 ,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37 ,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54 ,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65; e1.. - x66 + objvar =E= 0; e2.. 0.166666666666667*x1 - x3 =E= -0.5; e3.. 0.166666666666667*x2 - x4 =E= -0.5; e4.. 28.8031207707063*sqr(0.111229942702413 - x3) + 32.7180515537385*sqr( 0.59541072256986 - x4) - x5 =E= 0; e5.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x5) + 1.66666666666667*x5)* exp(-2.23606797749979*sqrt(x5)) - x6 =E= 0; e6.. 28.8031207707063*sqr(0.863858827199432 - x3) + 32.7180515537385*sqr( 0.683898783136516 - x4) - x7 =E= 0; e7.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x7) + 1.66666666666667*x7)* exp(-2.23606797749979*sqrt(x7)) - x8 =E= 0; e8.. 28.8031207707063*sqr(0.0951907195096362 - x3) + 32.7180515537385*sqr( 0.987881605457913 - x4) - x9 =E= 0; e9.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x9) + 1.66666666666667*x9)* exp(-2.23606797749979*sqrt(x9)) - x10 =E= 0; e10.. 28.8031207707063*sqr(0.730646280982898 - x3) + 32.7180515537385*sqr( 0.241742586444198 - x4) - x11 =E= 0; e11.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x11) + 1.66666666666667*x11) *exp(-2.23606797749979*sqrt(x11)) - x12 =E= 0; e12.. 28.8031207707063*sqr(0.320238787378679 - x3) + 32.7180515537385*sqr( 0.218296935351353 - x4) - x13 =E= 0; e13.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x13) + 1.66666666666667*x13) *exp(-2.23606797749979*sqrt(x13)) - x14 =E= 0; e14.. 28.8031207707063*sqr(0.87059458573363 - x3) + 32.7180515537385*sqr( 0.801085894330831 - x4) - x15 =E= 0; e15.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x15) + 1.66666666666667*x15) *exp(-2.23606797749979*sqrt(x15)) - x16 =E= 0; e16.. 28.8031207707063*sqr(0.0415641459792807 - x3) + 32.7180515537385*sqr( 0.659793606686887 - x4) - x17 =E= 0; e17.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x17) + 1.66666666666667*x17) *exp(-2.23606797749979*sqrt(x17)) - x18 =E= 0; e18.. 28.8031207707063*sqr(0.801433475166551 - x3) + 32.7180515537385*sqr( 0.402392282692781 - x4) - x19 =E= 0; e19.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x19) + 1.66666666666667*x19) *exp(-2.23606797749979*sqrt(x19)) - x20 =E= 0; e20.. 28.8031207707063*sqr(0.419134454621807 - x3) + 32.7180515537385*sqr( 0.520974338874469 - x4) - x21 =E= 0; e21.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x21) + 1.66666666666667*x21) *exp(-2.23606797749979*sqrt(x21)) - x22 =E= 0; e22.. 28.8031207707063*sqr(0.917201570287689 - x3) + 32.7180515537385*sqr( 0.84457790520867 - x4) - x23 =E= 0; e23.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x23) + 1.66666666666667*x23) *exp(-2.23606797749979*sqrt(x23)) - x24 =E= 0; e24.. 28.8031207707063*sqr(0.452550488432341 - x3) + 32.7180515537385*sqr( 0.465470910341813 - x4) - x25 =E= 0; e25.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x25) + 1.66666666666667*x25) *exp(-2.23606797749979*sqrt(x25)) - x26 =E= 0; e26.. 28.8031207707063*sqr(0.381086148033683 - x3) + 32.7180515537385*sqr( 0.0284410867012327 - x4) - x27 =E= 0; e27.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x27) + 1.66666666666667*x27) *exp(-2.23606797749979*sqrt(x27)) - x28 =E= 0; e28.. 28.8031207707063*sqr(0.664445710060874 - x3) + 32.7180515537385*sqr( 0.715687166073911 - x4) - x29 =E= 0; e29.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x29) + 1.66666666666667*x29) *exp(-2.23606797749979*sqrt(x29)) - x30 =E= 0; e30.. 28.8031207707063*sqr(0.35783709395474 - x3) + 32.7180515537385*sqr( 0.557803528332154 - x4) - x31 =E= 0; e31.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x31) + 1.66666666666667*x31) *exp(-2.23606797749979*sqrt(x31)) - x32 =E= 0; e32.. 28.8031207707063*sqr(0.290737438310084 - x3) + 32.7180515537385*sqr( 0.784795849934872 - x4) - x33 =E= 0; e33.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x33) + 1.66666666666667*x33) *exp(-2.23606797749979*sqrt(x33)) - x34 =E= 0; e34.. 28.8031207707063*sqr(0.184545159482649 - x3) + 32.7180515537385*sqr( 0.071764872448536 - x4) - x35 =E= 0; e35.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x35) + 1.66666666666667*x35) *exp(-2.23606797749979*sqrt(x35)) - x36 =E= 0; e36.. 28.8031207707063*sqr(0.52271755235026 - x3) + 32.7180515537385*sqr( 0.337358966433907 - x4) - x37 =E= 0; e37.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x37) + 1.66666666666667*x37) *exp(-2.23606797749979*sqrt(x37)) - x38 =E= 0; e38.. 28.8031207707063*sqr(0.245628297893699 - x3) + 32.7180515537385*sqr( 0.10677814322697 - x4) - x39 =E= 0; e39.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x39) + 1.66666666666667*x39) *exp(-2.23606797749979*sqrt(x39)) - x40 =E= 0; e40.. 28.8031207707063*sqr(0.948138629452501 - x3) + 32.7180515537385*sqr( 0.382163884479295 - x4) - x41 =E= 0; e41.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x41) + 1.66666666666667*x41) *exp(-2.23606797749979*sqrt(x41)) - x42 =E= 0; e42.. 28.8031207707063*sqr(0.556510835307559 - x3) + 32.7180515537385*sqr( 0.272182954878091 - x4) - x43 =E= 0; e43.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x43) + 1.66666666666667*x43) *exp(-2.23606797749979*sqrt(x43)) - x44 =E= 0; e44.. 28.8031207707063*sqr(0.022380181406173 - x3) + 32.7180515537385*sqr( 0.610730424339593 - x4) - x45 =E= 0; e45.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x45) + 1.66666666666667*x45) *exp(-2.23606797749979*sqrt(x45)) - x46 =E= 0; e46.. 28.8031207707063*sqr(0.497905175502968 - x3) + 32.7180515537385*sqr( 0.0602044467956143 - x4) - x47 =E= 0; e47.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x47) + 1.66666666666667*x47) *exp(-2.23606797749979*sqrt(x47)) - x48 =E= 0; e48.. 28.8031207707063*sqr(0.792485426296966 - x3) + 32.7180515537385*sqr( 0.151938325910849 - x4) - x49 =E= 0; e49.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x49) + 1.66666666666667*x49) *exp(-2.23606797749979*sqrt(x49)) - x50 =E= 0; e50.. 28.8031207707063*sqr(0.670655556838736 - x3) + 32.7180515537385*sqr( 0.876936461235205 - x4) - x51 =E= 0; e51.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x51) + 1.66666666666667*x51) *exp(-2.23606797749979*sqrt(x51)) - x52 =E= 0; e52.. 28.8031207707063*sqr(0.207973182236053 - x3) + 32.7180515537385*sqr( 0.331173292175481 - x4) - x53 =E= 0; e53.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x53) + 1.66666666666667*x53) *exp(-2.23606797749979*sqrt(x53)) - x54 =E= 0; e54.. 28.8031207707063*sqr(0.966799636494498 - x3) + 32.7180515537385*sqr( 0.903623280335378 - x4) - x55 =E= 0; e55.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x55) + 1.66666666666667*x55) *exp(-2.23606797749979*sqrt(x55)) - x56 =E= 0; e56.. 28.8031207707063*sqr(0.73547573937596 - x3) + 32.7180515537385*sqr( 0.750945430575571 - x4) - x57 =E= 0; e57.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x57) + 1.66666666666667*x57) *exp(-2.23606797749979*sqrt(x57)) - x58 =E= 0; e58.. 28.8031207707063*sqr(0.610566185432721 - x3) + 32.7180515537385*sqr( 0.198845982666349 - x4) - x59 =E= 0; e59.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x59) + 1.66666666666667*x59) *exp(-2.23606797749979*sqrt(x59)) - x60 =E= 0; e60.. 28.8031207707063*sqr(0.141944660623143 - x3) + 32.7180515537385*sqr( 0.489288865821674 - x4) - x61 =E= 0; e61.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x61) + 1.66666666666667*x61) *exp(-2.23606797749979*sqrt(x61)) - x62 =E= 0; e62.. 28.8031207707063*sqr(0.578558541443415 - x3) + 32.7180515537385*sqr( 0.962551216897219 - x4) - x63 =E= 0; e63.. 0.267663478098588*(1 + 2.23606797749979*sqrt(x63) + 1.66666666666667*x63) *exp(-2.23606797749979*sqrt(x63)) - x64 =E= 0; e64.. - 0.141170866470016*x6 - 0.0410227184433634*x8 + 0.00923158102538404*x10 + 0.0322471218273555*x12 + 0.159305500449696*x14 - 0.123117661099077*x16 + 0.0380530713899642*x18 + 0.889594746101726*x20 + 0.514139990210469*x22 - 0.0738007765330698*x24 + 1.44710982730193*x26 + 0.132568049860004*x28 + 1.32552100239566*x30 - 0.880281256081741*x32 + 0.67317507860953*x34 + 0.0699447658622974*x36 - 0.180419508821865*x38 + 0.114486082175227*x40 + 0.0157657511439586*x42 - 2.42272624857116*x44 + 0.0619293699366356*x46 - 0.102616266190338*x48 + 0.236512593081257*x50 + 0.39189121299016*x52 + 0.0949736077002411*x54 - 0.013659007622883*x56 + 0.408191007714036*x58 - 1.79436698216086*x60 - 0.393018856049253*x62 + 0.140369132198771*x64 - x65 =E= 0; e65.. 1.70327473357547*x65 - x66 =E= 0.104337166479966; * set non-default bounds x1.lo = -3; x1.up = 3; x2.lo = -3; x2.up = 3; x3.lo = -1; x3.up = 1; x4.lo = -1; x4.up = 1; x5.up = 10000000; x6.up = 10000000; x7.up = 10000000; x8.up = 10000000; x9.up = 10000000; x10.up = 10000000; x11.up = 10000000; x12.up = 10000000; x13.up = 10000000; x14.up = 10000000; x15.up = 10000000; x16.up = 10000000; x17.up = 10000000; x18.up = 10000000; x19.up = 10000000; x20.up = 10000000; x21.up = 10000000; x22.up = 10000000; x23.up = 10000000; x24.up = 10000000; x25.up = 10000000; x26.up = 10000000; x27.up = 10000000; x28.up = 10000000; x29.up = 10000000; x30.up = 10000000; x31.up = 10000000; x32.up = 10000000; x33.up = 10000000; x34.up = 10000000; x35.up = 10000000; x36.up = 10000000; x37.up = 10000000; x38.up = 10000000; x39.up = 10000000; x40.up = 10000000; x41.up = 10000000; x42.up = 10000000; x43.up = 10000000; x44.up = 10000000; x45.up = 10000000; x46.up = 10000000; x47.up = 10000000; x48.up = 10000000; x49.up = 10000000; x50.up = 10000000; x51.up = 10000000; x52.up = 10000000; x53.up = 10000000; x54.up = 10000000; x55.up = 10000000; x56.up = 10000000; x57.up = 10000000; x58.up = 10000000; x59.up = 10000000; x60.up = 10000000; x61.up = 10000000; x62.up = 10000000; x63.up = 10000000; x64.up = 10000000; x65.lo = -10000000; x65.up = 10000000; x66.lo = -10000000; x66.up = 10000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f