MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kriging_peaks-full100
Gaussian process regression for the peaks functions using 100 datapoints. This is the full-space formulation where intermediate variables are defined by additional constraints.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -20.21458462 (ANTIGONE) -2.63817506 (BARON) -2.63752657 (GUROBI) -2.63751238 (LINDO) -2.63753646 (SCIP) |
| Referencesⓘ | Schweidtmann, Artur M., Bongartz, Dominik, Grothe, Daniel, Kerkenhoff, Tim, Lin, Xiaopeng, Najman, Jaromil, and Mitsos, Alexander, Deterministic global optimization with Gaussian processes embedded, Mathematical Programming Computation, 13:3, 2021, 553-581. |
| Applicationⓘ | Kriging |
| Added to libraryⓘ | 11 Dec 2020 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 206 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 102 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 204 |
| #Linear Constraintsⓘ | 4 |
| #Quadratic Constraintsⓘ | 100 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 100 |
| Operands in Gen. Nonlin. Functionsⓘ | exp mul sqrt |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 607 |
| #Nonlinear Nonzeros in Jacobianⓘ | 300 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 102 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 102 |
| #Blocks in Hessian of Lagrangianⓘ | 102 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 8.0654e-04 |
| Maximal coefficientⓘ | 4.0458e+01 |
| Infeasibility of initial pointⓘ | 55.58 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 205 205 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 207 207 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 609 309 300 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,objvar;
Positive Variables x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20
,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37
,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54
,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71
,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88
,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205;
e1.. - x206 + objvar =E= 0;
e2.. 0.166666666666667*x1 - x3 =E= -0.5;
e3.. 0.166666666666667*x2 - x4 =E= -0.5;
e4.. 19.6201106576326*sqr(0.318506016217697 - x3) + 40.4583182683705*sqr(
0.995844837878127 - x4) - x5 =E= 0;
e5.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x5) + 1.66666666666667*x5)*
exp(-2.23606797749979*sqrt(x5)) - x6 =E= 0;
e6.. 19.6201106576326*sqr(0.978322853549746 - x3) + 40.4583182683705*sqr(
0.637219747152577 - x4) - x7 =E= 0;
e7.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x7) + 1.66666666666667*x7)*
exp(-2.23606797749979*sqrt(x7)) - x8 =E= 0;
e8.. 19.6201106576326*sqr(0.714910542287372 - x3) + 40.4583182683705*sqr(
0.253275217064727 - x4) - x9 =E= 0;
e9.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x9) + 1.66666666666667*x9)*
exp(-2.23606797749979*sqrt(x9)) - x10 =E= 0;
e10.. 19.6201106576326*sqr(0.250905906429474 - x3) + 40.4583182683705*sqr(
0.696708131263985 - x4) - x11 =E= 0;
e11.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x11) + 1.66666666666667*x11)
*exp(-2.23606797749979*sqrt(x11)) - x12 =E= 0;
e12.. 19.6201106576326*sqr(0.527260839203782 - x3) + 40.4583182683705*sqr(
0.287938256673157 - x4) - x13 =E= 0;
e13.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x13) + 1.66666666666667*x13)
*exp(-2.23606797749979*sqrt(x13)) - x14 =E= 0;
e14.. 19.6201106576326*sqr(0.802728000268526 - x3) + 40.4583182683705*sqr(
0.547089425439597 - x4) - x15 =E= 0;
e15.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x15) + 1.66666666666667*x15)
*exp(-2.23606797749979*sqrt(x15)) - x16 =E= 0;
e16.. 19.6201106576326*sqr(0.879932157407316 - x3) + 40.4583182683705*sqr(
0.907154534788069 - x4) - x17 =E= 0;
e17.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x17) + 1.66666666666667*x17)
*exp(-2.23606797749979*sqrt(x17)) - x18 =E= 0;
e18.. 19.6201106576326*sqr(0.50417358707111 - x3) + 40.4583182683705*sqr(
0.649926418828027 - x4) - x19 =E= 0;
e19.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x19) + 1.66666666666667*x19)
*exp(-2.23606797749979*sqrt(x19)) - x20 =E= 0;
e20.. 19.6201106576326*sqr(0.604356641693184 - x3) + 40.4583182683705*sqr(
0.18817836068844 - x4) - x21 =E= 0;
e21.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x21) + 1.66666666666667*x21)
*exp(-2.23606797749979*sqrt(x21)) - x22 =E= 0;
e22.. 19.6201106576326*sqr(0.135064035172797 - x3) + 40.4583182683705*sqr(
0.624098750178228 - x4) - x23 =E= 0;
e23.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x23) + 1.66666666666667*x23)
*exp(-2.23606797749979*sqrt(x23)) - x24 =E= 0;
e24.. 19.6201106576326*sqr(0.125521944296455 - x3) + 40.4583182683705*sqr(
0.00197030842321803 - x4) - x25 =E= 0;
e25.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x25) + 1.66666666666667*x25)
*exp(-2.23606797749979*sqrt(x25)) - x26 =E= 0;
e26.. 19.6201106576326*sqr(0.679349281251307 - x3) + 40.4583182683705*sqr(
0.807101799162965 - x4) - x27 =E= 0;
e27.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x27) + 1.66666666666667*x27)
*exp(-2.23606797749979*sqrt(x27)) - x28 =E= 0;
e28.. 19.6201106576326*sqr(0.0615212038056166 - x3) + 40.4583182683705*sqr(
0.607970798708592 - x4) - x29 =E= 0;
e29.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x29) + 1.66666666666667*x29)
*exp(-2.23606797749979*sqrt(x29)) - x30 =E= 0;
e30.. 19.6201106576326*sqr(0.831245254381306 - x3) + 40.4583182683705*sqr(
0.292472741844543 - x4) - x31 =E= 0;
e31.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x31) + 1.66666666666667*x31)
*exp(-2.23606797749979*sqrt(x31)) - x32 =E= 0;
e32.. 19.6201106576326*sqr(0.584712421934664 - x3) + 40.4583182683705*sqr(
0.196740943237204 - x4) - x33 =E= 0;
e33.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x33) + 1.66666666666667*x33)
*exp(-2.23606797749979*sqrt(x33)) - x34 =E= 0;
e34.. 19.6201106576326*sqr(0.461374581704313 - x3) + 40.4583182683705*sqr(
0.0886973159720118 - x4) - x35 =E= 0;
e35.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x35) + 1.66666666666667*x35)
*exp(-2.23606797749979*sqrt(x35)) - x36 =E= 0;
e36.. 19.6201106576326*sqr(0.1526506202799 - x3) + 40.4583182683705*sqr(
0.132122524217723 - x4) - x37 =E= 0;
e37.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x37) + 1.66666666666667*x37)
*exp(-2.23606797749979*sqrt(x37)) - x38 =E= 0;
e38.. 19.6201106576326*sqr(0.923671129729507 - x3) + 40.4583182683705*sqr(
0.911336854103809 - x4) - x39 =E= 0;
e39.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x39) + 1.66666666666667*x39)
*exp(-2.23606797749979*sqrt(x39)) - x40 =E= 0;
e40.. 19.6201106576326*sqr(0.65850701610235 - x3) + 40.4583182683705*sqr(
0.0349859399197679 - x4) - x41 =E= 0;
e41.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x41) + 1.66666666666667*x41)
*exp(-2.23606797749979*sqrt(x41)) - x42 =E= 0;
e42.. 19.6201106576326*sqr(0.399532188429421 - x3) + 40.4583182683705*sqr(
0.213824861982886 - x4) - x43 =E= 0;
e43.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x43) + 1.66666666666667*x43)
*exp(-2.23606797749979*sqrt(x43)) - x44 =E= 0;
e44.. 19.6201106576326*sqr(0.868669074211383 - x3) + 40.4583182683705*sqr(
0.713999332971928 - x4) - x45 =E= 0;
e45.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x45) + 1.66666666666667*x45)
*exp(-2.23606797749979*sqrt(x45)) - x46 =E= 0;
e46.. 19.6201106576326*sqr(0.100872983940184 - x3) + 40.4583182683705*sqr(
0.876456772465024 - x4) - x47 =E= 0;
e47.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x47) + 1.66666666666667*x47)
*exp(-2.23606797749979*sqrt(x47)) - x48 =E= 0;
e48.. 19.6201106576326*sqr(0.160507966752362 - x3) + 40.4583182683705*sqr(
0.671333533159986 - x4) - x49 =E= 0;
e49.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x49) + 1.66666666666667*x49)
*exp(-2.23606797749979*sqrt(x49)) - x50 =E= 0;
e50.. 19.6201106576326*sqr(0.174845079492285 - x3) + 40.4583182683705*sqr(
0.174933461850037 - x4) - x51 =E= 0;
e51.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x51) + 1.66666666666667*x51)
*exp(-2.23606797749979*sqrt(x51)) - x52 =E= 0;
e52.. 19.6201106576326*sqr(0.285715225071541 - x3) + 40.4583182683705*sqr(
0.389101225718371 - x4) - x53 =E= 0;
e53.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x53) + 1.66666666666667*x53)
*exp(-2.23606797749979*sqrt(x53)) - x54 =E= 0;
e54.. 19.6201106576326*sqr(0.216610696340541 - x3) + 40.4583182683705*sqr(
0.374061818330203 - x4) - x55 =E= 0;
e55.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x55) + 1.66666666666667*x55)
*exp(-2.23606797749979*sqrt(x55)) - x56 =E= 0;
e56.. 19.6201106576326*sqr(0.5920970098103 - x3) + 40.4583182683705*sqr(
0.896819702655309 - x4) - x57 =E= 0;
e57.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x57) + 1.66666666666667*x57)
*exp(-2.23606797749979*sqrt(x57)) - x58 =E= 0;
e58.. 19.6201106576326*sqr(0.956432844858346 - x3) + 40.4583182683705*sqr(
0.964392512538353 - x4) - x59 =E= 0;
e59.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x59) + 1.66666666666667*x59)
*exp(-2.23606797749979*sqrt(x59)) - x60 =E= 0;
e60.. 19.6201106576326*sqr(0.744564705036913 - x3) + 40.4583182683705*sqr(
0.505639230184061 - x4) - x61 =E= 0;
e61.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x61) + 1.66666666666667*x61)
*exp(-2.23606797749979*sqrt(x61)) - x62 =E= 0;
e62.. 19.6201106576326*sqr(0.325227222888816 - x3) + 40.4583182683705*sqr(
0.201259092205688 - x4) - x63 =E= 0;
e63.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x63) + 1.66666666666667*x63)
*exp(-2.23606797749979*sqrt(x63)) - x64 =E= 0;
e64.. 19.6201106576326*sqr(0.386570918559707 - x3) + 40.4583182683705*sqr(
0.663805306296134 - x4) - x65 =E= 0;
e65.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x65) + 1.66666666666667*x65)
*exp(-2.23606797749979*sqrt(x65)) - x66 =E= 0;
e66.. 19.6201106576326*sqr(0.94942138275704 - x3) + 40.4583182683705*sqr(
0.446919746985353 - x4) - x67 =E= 0;
e67.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x67) + 1.66666666666667*x67)
*exp(-2.23606797749979*sqrt(x67)) - x68 =E= 0;
e68.. 19.6201106576326*sqr(0.00265650756791783 - x3) + 40.4583182683705*sqr(
0.552017194794834 - x4) - x69 =E= 0;
e69.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x69) + 1.66666666666667*x69)
*exp(-2.23606797749979*sqrt(x69)) - x70 =E= 0;
e70.. 19.6201106576326*sqr(0.649065658109127 - x3) + 40.4583182683705*sqr(
0.391092958894925 - x4) - x71 =E= 0;
e71.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x71) + 1.66666666666667*x71)
*exp(-2.23606797749979*sqrt(x71)) - x72 =E= 0;
e72.. 19.6201106576326*sqr(0.752625677361254 - x3) + 40.4583182683705*sqr(
0.474421900201028 - x4) - x73 =E= 0;
e73.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x73) + 1.66666666666667*x73)
*exp(-2.23606797749979*sqrt(x73)) - x74 =E= 0;
e74.. 19.6201106576326*sqr(0.932944114995816 - x3) + 40.4583182683705*sqr(
0.368601285295509 - x4) - x75 =E= 0;
e75.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x75) + 1.66666666666667*x75)
*exp(-2.23606797749979*sqrt(x75)) - x76 =E= 0;
e76.. 19.6201106576326*sqr(0.0197987981248721 - x3) + 40.4583182683705*sqr(
0.245930545534257 - x4) - x77 =E= 0;
e77.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x77) + 1.66666666666667*x77)
*exp(-2.23606797749979*sqrt(x77)) - x78 =E= 0;
e78.. 19.6201106576326*sqr(0.769026185188662 - x3) + 40.4583182683705*sqr(
0.486339957430933 - x4) - x79 =E= 0;
e79.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x79) + 1.66666666666667*x79)
*exp(-2.23606797749979*sqrt(x79)) - x80 =E= 0;
e80.. 19.6201106576326*sqr(0.964312478807674 - x3) + 40.4583182683705*sqr(
0.233027119480037 - x4) - x81 =E= 0;
e81.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x81) + 1.66666666666667*x81)
*exp(-2.23606797749979*sqrt(x81)) - x82 =E= 0;
e82.. 19.6201106576326*sqr(0.423923808602885 - x3) + 40.4583182683705*sqr(
0.458509823825938 - x4) - x83 =E= 0;
e83.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x83) + 1.66666666666667*x83)
*exp(-2.23606797749979*sqrt(x83)) - x84 =E= 0;
e84.. 19.6201106576326*sqr(0.854207993610184 - x3) + 40.4583182683705*sqr(
0.0972157844954085 - x4) - x85 =E= 0;
e85.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x85) + 1.66666666666667*x85)
*exp(-2.23606797749979*sqrt(x85)) - x86 =E= 0;
e86.. 19.6201106576326*sqr(0.0866111737415755 - x3) + 40.4583182683705*sqr(
0.422616771544244 - x4) - x87 =E= 0;
e87.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x87) + 1.66666666666667*x87)
*exp(-2.23606797749979*sqrt(x87)) - x88 =E= 0;
e88.. 19.6201106576326*sqr(0.612705324055941 - x3) + 40.4583182683705*sqr(
0.560135620231484 - x4) - x89 =E= 0;
e89.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x89) + 1.66666666666667*x89)
*exp(-2.23606797749979*sqrt(x89)) - x90 =E= 0;
e90.. 19.6201106576326*sqr(0.848893031532009 - x3) + 40.4583182683705*sqr(
0.221250268057618 - x4) - x91 =E= 0;
e91.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x91) + 1.66666666666667*x91)
*exp(-2.23606797749979*sqrt(x91)) - x92 =E= 0;
e92.. 19.6201106576326*sqr(0.912072548737684 - x3) + 40.4583182683705*sqr(
0.027449627111323 - x4) - x93 =E= 0;
e93.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x93) + 1.66666666666667*x93)
*exp(-2.23606797749979*sqrt(x93)) - x94 =E= 0;
e94.. 19.6201106576326*sqr(0.891994688236021 - x3) + 40.4583182683705*sqr(
0.0759826901839174 - x4) - x95 =E= 0;
e95.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x95) + 1.66666666666667*x95)
*exp(-2.23606797749979*sqrt(x95)) - x96 =E= 0;
e96.. 19.6201106576326*sqr(0.22120189691528 - x3) + 40.4583182683705*sqr(
0.759683863248548 - x4) - x97 =E= 0;
e97.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x97) + 1.66666666666667*x97)
*exp(-2.23606797749979*sqrt(x97)) - x98 =E= 0;
e98.. 19.6201106576326*sqr(0.48647303917701 - x3) + 40.4583182683705*sqr(
0.268273924566701 - x4) - x99 =E= 0;
e99.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x99) + 1.66666666666667*x99)
*exp(-2.23606797749979*sqrt(x99)) - x100 =E= 0;
e100.. 19.6201106576326*sqr(0.273974521869731 - x3) + 40.4583182683705*sqr(
0.578137486538462 - x4) - x101 =E= 0;
e101.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x101) + 1.66666666666667*
x101)*exp(-2.23606797749979*sqrt(x101)) - x102 =E= 0;
e102.. 19.6201106576326*sqr(0.733448786698921 - x3) + 40.4583182683705*sqr(
0.16348650934777 - x4) - x103 =E= 0;
e103.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x103) + 1.66666666666667*
x103)*exp(-2.23606797749979*sqrt(x103)) - x104 =E= 0;
e104.. 19.6201106576326*sqr(0.293349924152424 - x3) + 40.4583182683705*sqr(
0.687270025553917 - x4) - x105 =E= 0;
e105.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x105) + 1.66666666666667*
x105)*exp(-2.23606797749979*sqrt(x105)) - x106 =E= 0;
e106.. 19.6201106576326*sqr(0.681319307041876 - x3) + 40.4583182683705*sqr(
0.495907939573163 - x4) - x107 =E= 0;
e107.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x107) + 1.66666666666667*
x107)*exp(-2.23606797749979*sqrt(x107)) - x108 =E= 0;
e108.. 19.6201106576326*sqr(0.884830597977837 - x3) + 40.4583182683705*sqr(
0.0558220505207711 - x4) - x109 =E= 0;
e109.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x109) + 1.66666666666667*
x109)*exp(-2.23606797749979*sqrt(x109)) - x110 =E= 0;
e110.. 19.6201106576326*sqr(0.550581288961839 - x3) + 40.4583182683705*sqr(
0.825204342428317 - x4) - x111 =E= 0;
e111.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x111) + 1.66666666666667*
x111)*exp(-2.23606797749979*sqrt(x111)) - x112 =E= 0;
e112.. 19.6201106576326*sqr(0.145742110147004 - x3) + 40.4583182683705*sqr(
0.887874149111678 - x4) - x113 =E= 0;
e113.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x113) + 1.66666666666667*
x113)*exp(-2.23606797749979*sqrt(x113)) - x114 =E= 0;
e114.. 19.6201106576326*sqr(0.664444857551067 - x3) + 40.4583182683705*sqr(
0.619644969230408 - x4) - x115 =E= 0;
e115.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x115) + 1.66666666666667*
x115)*exp(-2.23606797749979*sqrt(x115)) - x116 =E= 0;
e116.. 19.6201106576326*sqr(0.577174879646415 - x3) + 40.4583182683705*sqr(
0.652023373093265 - x4) - x117 =E= 0;
e117.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x117) + 1.66666666666667*
x117)*exp(-2.23606797749979*sqrt(x117)) - x118 =E= 0;
e118.. 19.6201106576326*sqr(0.0285609915535226 - x3) + 40.4583182683705*sqr(
0.0172365689646424 - x4) - x119 =E= 0;
e119.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x119) + 1.66666666666667*
x119)*exp(-2.23606797749979*sqrt(x119)) - x120 =E= 0;
e120.. 19.6201106576326*sqr(0.239784592868809 - x3) + 40.4583182683705*sqr(
0.740993101987497 - x4) - x121 =E= 0;
e121.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x121) + 1.66666666666667*
x121)*exp(-2.23606797749979*sqrt(x121)) - x122 =E= 0;
e122.. 19.6201106576326*sqr(0.404269209174319 - x3) + 40.4583182683705*sqr(
0.511355166434789 - x4) - x123 =E= 0;
e123.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x123) + 1.66666666666667*
x123)*exp(-2.23606797749979*sqrt(x123)) - x124 =E= 0;
e124.. 19.6201106576326*sqr(0.455524109122716 - x3) + 40.4583182683705*sqr(
0.924581782561569 - x4) - x125 =E= 0;
e125.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x125) + 1.66666666666667*
x125)*exp(-2.23606797749979*sqrt(x125)) - x126 =E= 0;
e126.. 19.6201106576326*sqr(0.516083695968459 - x3) + 40.4583182683705*sqr(
0.0629407762591054 - x4) - x127 =E= 0;
e127.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x127) + 1.66666666666667*
x127)*exp(-2.23606797749979*sqrt(x127)) - x128 =E= 0;
e128.. 19.6201106576326*sqr(0.0448376486929695 - x3) + 40.4583182683705*sqr(
0.153029022408953 - x4) - x129 =E= 0;
e129.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x129) + 1.66666666666667*
x129)*exp(-2.23606797749979*sqrt(x129)) - x130 =E= 0;
e130.. 19.6201106576326*sqr(0.564762895929878 - x3) + 40.4583182683705*sqr(
0.944616444424944 - x4) - x131 =E= 0;
e131.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x131) + 1.66666666666667*
x131)*exp(-2.23606797749979*sqrt(x131)) - x132 =E= 0;
e132.. 19.6201106576326*sqr(0.443898701505148 - x3) + 40.4583182683705*sqr(
0.303161718490791 - x4) - x133 =E= 0;
e133.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x133) + 1.66666666666667*
x133)*exp(-2.23606797749979*sqrt(x133)) - x134 =E= 0;
e134.. 19.6201106576326*sqr(0.692211891216269 - x3) + 40.4583182683705*sqr(
0.797736896688745 - x4) - x135 =E= 0;
e135.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x135) + 1.66666666666667*
x135)*exp(-2.23606797749979*sqrt(x135)) - x136 =E= 0;
e136.. 19.6201106576326*sqr(0.494303734171884 - x3) + 40.4583182683705*sqr(
0.534951587694652 - x4) - x137 =E= 0;
e137.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x137) + 1.66666666666667*
x137)*exp(-2.23606797749979*sqrt(x137)) - x138 =E= 0;
e138.. 19.6201106576326*sqr(0.541298902097622 - x3) + 40.4583182683705*sqr(
0.932298392828667 - x4) - x139 =E= 0;
e139.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x139) + 1.66666666666667*
x139)*exp(-2.23606797749979*sqrt(x139)) - x140 =E= 0;
e140.. 19.6201106576326*sqr(0.357165248560784 - x3) + 40.4583182683705*sqr(
0.976723864707925 - x4) - x141 =E= 0;
e141.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x141) + 1.66666666666667*
x141)*exp(-2.23606797749979*sqrt(x141)) - x142 =E= 0;
e142.. 19.6201106576326*sqr(0.205489753778211 - x3) + 40.4583182683705*sqr(
0.527215593426171 - x4) - x143 =E= 0;
e143.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x143) + 1.66666666666667*
x143)*exp(-2.23606797749979*sqrt(x143)) - x144 =E= 0;
e144.. 19.6201106576326*sqr(0.364195377111947 - x3) + 40.4583182683705*sqr(
0.838017689944174 - x4) - x145 =E= 0;
e145.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x145) + 1.66666666666667*
x145)*exp(-2.23606797749979*sqrt(x145)) - x146 =E= 0;
e146.. 19.6201106576326*sqr(0.708429430531505 - x3) + 40.4583182683705*sqr(
0.334041203994477 - x4) - x147 =E= 0;
e147.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x147) + 1.66666666666667*
x147)*exp(-2.23606797749979*sqrt(x147)) - x148 =E= 0;
e148.. 19.6201106576326*sqr(0.78629650896495 - x3) + 40.4583182683705*sqr(
0.727249984298437 - x4) - x149 =E= 0;
e149.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x149) + 1.66666666666667*
x149)*exp(-2.23606797749979*sqrt(x149)) - x150 =E= 0;
e150.. 19.6201106576326*sqr(0.265063384197875 - x3) + 40.4583182683705*sqr(
0.867696619148044 - x4) - x151 =E= 0;
e151.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x151) + 1.66666666666667*
x151)*exp(-2.23606797749979*sqrt(x151)) - x152 =E= 0;
e152.. 19.6201106576326*sqr(0.342667959707229 - x3) + 40.4583182683705*sqr(
0.346858798294088 - x4) - x153 =E= 0;
e153.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x153) + 1.66666666666667*
x153)*exp(-2.23606797749979*sqrt(x153)) - x154 =E= 0;
e154.. 19.6201106576326*sqr(0.726645889735597 - x3) + 40.4583182683705*sqr(
0.786709742939206 - x4) - x155 =E= 0;
e155.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x155) + 1.66666666666667*
x155)*exp(-2.23606797749979*sqrt(x155)) - x156 =E= 0;
e156.. 19.6201106576326*sqr(0.908753819667235 - x3) + 40.4583182683705*sqr(
0.7782091912312 - x4) - x157 =E= 0;
e157.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x157) + 1.66666666666667*
x157)*exp(-2.23606797749979*sqrt(x157)) - x158 =E= 0;
e158.. 19.6201106576326*sqr(0.117313555083334 - x3) + 40.4583182683705*sqr(
0.278189461924838 - x4) - x159 =E= 0;
e159.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x159) + 1.66666666666667*
x159)*exp(-2.23606797749979*sqrt(x159)) - x160 =E= 0;
e160.. 19.6201106576326*sqr(0.413460893326292 - x3) + 40.4583182683705*sqr(
0.594865743480795 - x4) - x161 =E= 0;
e161.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x161) + 1.66666666666667*
x161)*exp(-2.23606797749979*sqrt(x161)) - x162 =E= 0;
e162.. 19.6201106576326*sqr(0.183175383694082 - x3) + 40.4583182683705*sqr(
0.98517786729995 - x4) - x163 =E= 0;
e163.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x163) + 1.66666666666667*
x163)*exp(-2.23606797749979*sqrt(x163)) - x164 =E= 0;
e164.. 19.6201106576326*sqr(0.434995519685955 - x3) + 40.4583182683705*sqr(
0.587016915749571 - x4) - x165 =E= 0;
e165.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x165) + 1.66666666666667*
x165)*exp(-2.23606797749979*sqrt(x165)) - x166 =E= 0;
e166.. 19.6201106576326*sqr(0.074849076326074 - x3) + 40.4583182683705*sqr(
0.737289796031188 - x4) - x167 =E= 0;
e167.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x167) + 1.66666666666667*
x167)*exp(-2.23606797749979*sqrt(x167)) - x168 =E= 0;
e168.. 19.6201106576326*sqr(0.198922773524273 - x3) + 40.4583182683705*sqr(
0.853849045797167 - x4) - x169 =E= 0;
e169.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x169) + 1.66666666666667*
x169)*exp(-2.23606797749979*sqrt(x169)) - x170 =E= 0;
e170.. 19.6201106576326*sqr(0.332933347958517 - x3) + 40.4583182683705*sqr(
0.95100770837416 - x4) - x171 =E= 0;
e171.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x171) + 1.66666666666667*
x171)*exp(-2.23606797749979*sqrt(x171)) - x172 =E= 0;
e172.. 19.6201106576326*sqr(0.631363152517753 - x3) + 40.4583182683705*sqr(
0.438050962226213 - x4) - x173 =E= 0;
e173.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x173) + 1.66666666666667*
x173)*exp(-2.23606797749979*sqrt(x173)) - x174 =E= 0;
e174.. 19.6201106576326*sqr(0.0949450178781353 - x3) + 40.4583182683705*sqr(
0.3207087433326 - x4) - x175 =E= 0;
e175.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x175) + 1.66666666666667*
x175)*exp(-2.23606797749979*sqrt(x175)) - x176 =E= 0;
e176.. 19.6201106576326*sqr(0.811141588829345 - x3) + 40.4583182683705*sqr(
0.403851907127018 - x4) - x177 =E= 0;
e177.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x177) + 1.66666666666667*
x177)*exp(-2.23606797749979*sqrt(x177)) - x178 =E= 0;
e178.. 19.6201106576326*sqr(0.538821717250912 - x3) + 40.4583182683705*sqr(
0.108191078958746 - x4) - x179 =E= 0;
e179.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x179) + 1.66666666666667*
x179)*exp(-2.23606797749979*sqrt(x179)) - x180 =E= 0;
e180.. 19.6201106576326*sqr(0.822652976366767 - x3) + 40.4583182683705*sqr(
0.318400841118104 - x4) - x181 =E= 0;
e181.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x181) + 1.66666666666667*
x181)*exp(-2.23606797749979*sqrt(x181)) - x182 =E= 0;
e182.. 19.6201106576326*sqr(0.377855094496717 - x3) + 40.4583182683705*sqr(
0.817669351412261 - x4) - x183 =E= 0;
e183.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x183) + 1.66666666666667*
x183)*exp(-2.23606797749979*sqrt(x183)) - x184 =E= 0;
e184.. 19.6201106576326*sqr(0.791607276319391 - x3) + 40.4583182683705*sqr(
0.466689756943249 - x4) - x185 =E= 0;
e185.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x185) + 1.66666666666667*
x185)*exp(-2.23606797749979*sqrt(x185)) - x186 =E= 0;
e186.. 19.6201106576326*sqr(0.476668520345214 - x3) + 40.4583182683705*sqr(
0.354713551343703 - x4) - x187 =E= 0;
e187.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x187) + 1.66666666666667*
x187)*exp(-2.23606797749979*sqrt(x187)) - x188 =E= 0;
e188.. 19.6201106576326*sqr(0.308529934759943 - x3) + 40.4583182683705*sqr(
0.414184726086856 - x4) - x189 =E= 0;
e189.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x189) + 1.66666666666667*
x189)*exp(-2.23606797749979*sqrt(x189)) - x190 =E= 0;
e190.. 19.6201106576326*sqr(0.984324175397362 - x3) + 40.4583182683705*sqr(
0.123289956621765 - x4) - x191 =E= 0;
e191.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x191) + 1.66666666666667*
x191)*exp(-2.23606797749979*sqrt(x191)) - x192 =E= 0;
e192.. 19.6201106576326*sqr(0.245909549640963 - x3) + 40.4583182683705*sqr(
0.117334449988445 - x4) - x193 =E= 0;
e193.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x193) + 1.66666666666667*
x193)*exp(-2.23606797749979*sqrt(x193)) - x194 =E= 0;
e194.. 19.6201106576326*sqr(0.993716625482424 - x3) + 40.4583182683705*sqr(
0.844917725508104 - x4) - x195 =E= 0;
e195.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x195) + 1.66666666666667*
x195)*exp(-2.23606797749979*sqrt(x195)) - x196 =E= 0;
e196.. 19.6201106576326*sqr(0.622641599216787 - x3) + 40.4583182683705*sqr(
0.0469351443733001 - x4) - x197 =E= 0;
e197.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x197) + 1.66666666666667*
x197)*exp(-2.23606797749979*sqrt(x197)) - x198 =E= 0;
e198.. 19.6201106576326*sqr(0.0390389585642251 - x3) + 40.4583182683705*sqr(
0.760465288841365 - x4) - x199 =E= 0;
e199.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x199) + 1.66666666666667*
x199)*exp(-2.23606797749979*sqrt(x199)) - x200 =E= 0;
e200.. 19.6201106576326*sqr(0.0550869735721871 - x3) + 40.4583182683705*sqr(
0.703590766264295 - x4) - x201 =E= 0;
e201.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x201) + 1.66666666666667*
x201)*exp(-2.23606797749979*sqrt(x201)) - x202 =E= 0;
e202.. 19.6201106576326*sqr(0.770647547227112 - x3) + 40.4583182683705*sqr(
0.143538885593233 - x4) - x203 =E= 0;
e203.. 0.528747399043267*(1 + 2.23606797749979*sqrt(x203) + 1.66666666666667*
x203)*exp(-2.23606797749979*sqrt(x203)) - x204 =E= 0;
e204.. - 0.182933840574275*x6 - 0.258375690953221*x8 + 0.0136122459492268*x10
- 0.254317299688475*x12 - 1.72914748598619*x14 + 0.0401991783404903*x16
- 0.184591212754217*x18 + 0.520259160969762*x20 - 1.2233737728867*x22
+ 0.0126752438724126*x24 - 0.0511953360099554*x26
+ 0.254156572025371*x28 + 0.156337402844952*x30
+ 0.0809472061313184*x32 - 1.64008485239816*x34 - 0.023961568170673*x36
+ 0.0272592478939324*x38 - 0.109665372232369*x40
+ 0.223793212846333*x42 - 0.389361763958776*x44 - 0.274385123906661*x46
- 0.0688761686964344*x48 - 0.0613933558184358*x50
+ 0.087197784582455*x52 - 0.0645580279870866*x54
- 0.278919254245773*x56 + 0.0557357797303535*x58
- 0.0785617420493119*x60 + 0.696842911744125*x62
+ 0.329347504387466*x64 + 0.450541608706639*x66 - 0.441989869404116*x68
+ 0.126158865730648*x70 + 0.20670484328048*x72 + 0.647571059794983*x74
- 0.291485770962819*x76 - 0.0575180312993872*x78
+ 0.479419229658308*x80 - 0.0741415778431238*x82 + 1.10520079389947*x84
+ 0.0864953039291684*x86 + 0.000806543622023244*x88
- 0.548469754087263*x90 + 0.133175185806227*x92
- 0.0615455000248571*x94 + 0.00295426291516425*x96
- 0.114675056256521*x98 - 1.52936676831272*x100 - 1.36377801076615*x102
+ 0.277986565904696*x104 - 0.220778756040578*x106
+ 0.673579672644263*x108 - 0.00815289633304084*x110
+ 1.8847598526994*x112 - 0.110097994376591*x114
+ 0.115494049697011*x116 + 0.149972090269243*x118
- 0.0849851027378783*x120 - 0.0985578252230923*x122
+ 0.151554038808426*x124 + 0.000866204254118116*x126
+ 0.0964683366588659*x128 - 0.0647390275036913*x130
- 0.261881497906859*x132 + 0.356769079965463*x134
+ 0.171425484506281*x136 - 0.355790036290457*x138
- 0.127874548811201*x140 - 0.232347098869325*x142
- 0.88173725751002*x144 + 0.626944255802698*x146
+ 0.311018780677634*x148 - 0.227829691963433*x150
- 0.205785035940163*x152 + 1.2839257885319*x154
- 0.088757429022035*x156 - 0.181261777570689*x158
- 0.0109399618807929*x160 - 0.219880785383143*x162
- 0.0784940149624078*x164 - 0.133516735303469*x166
+ 0.0194394261618568*x168 - 0.187437564829189*x170
- 0.233053498035817*x172 + 0.0132786485923555*x174
- 0.0283449234835788*x176 + 0.0654909239063079*x178
- 0.337834757325268*x180 + 0.075295926581527*x182
+ 1.12238983774028*x184 + 0.231202223830195*x186
+ 0.994812069872737*x188 - 0.148961022610842*x190
- 0.0686403643176423*x192 + 0.198430623784632*x194
- 0.0468503032283778*x196 + 0.226337047268603*x198
- 0.00154381283468628*x200 + 0.0604034275627598*x202
+ 0.300154544626091*x204 - x205 =E= 0;
e205.. 1.68132371362997*x205 - x206 =E= -0.31590138750578;
* set non-default bounds
x1.lo = -3; x1.up = 3;
x2.lo = -3; x2.up = 3;
x3.lo = -1; x3.up = 1;
x4.lo = -1; x4.up = 1;
x5.up = 10000000;
x6.up = 10000000;
x7.up = 10000000;
x8.up = 10000000;
x9.up = 10000000;
x10.up = 10000000;
x11.up = 10000000;
x12.up = 10000000;
x13.up = 10000000;
x14.up = 10000000;
x15.up = 10000000;
x16.up = 10000000;
x17.up = 10000000;
x18.up = 10000000;
x19.up = 10000000;
x20.up = 10000000;
x21.up = 10000000;
x22.up = 10000000;
x23.up = 10000000;
x24.up = 10000000;
x25.up = 10000000;
x26.up = 10000000;
x27.up = 10000000;
x28.up = 10000000;
x29.up = 10000000;
x30.up = 10000000;
x31.up = 10000000;
x32.up = 10000000;
x33.up = 10000000;
x34.up = 10000000;
x35.up = 10000000;
x36.up = 10000000;
x37.up = 10000000;
x38.up = 10000000;
x39.up = 10000000;
x40.up = 10000000;
x41.up = 10000000;
x42.up = 10000000;
x43.up = 10000000;
x44.up = 10000000;
x45.up = 10000000;
x46.up = 10000000;
x47.up = 10000000;
x48.up = 10000000;
x49.up = 10000000;
x50.up = 10000000;
x51.up = 10000000;
x52.up = 10000000;
x53.up = 10000000;
x54.up = 10000000;
x55.up = 10000000;
x56.up = 10000000;
x57.up = 10000000;
x58.up = 10000000;
x59.up = 10000000;
x60.up = 10000000;
x61.up = 10000000;
x62.up = 10000000;
x63.up = 10000000;
x64.up = 10000000;
x65.up = 10000000;
x66.up = 10000000;
x67.up = 10000000;
x68.up = 10000000;
x69.up = 10000000;
x70.up = 10000000;
x71.up = 10000000;
x72.up = 10000000;
x73.up = 10000000;
x74.up = 10000000;
x75.up = 10000000;
x76.up = 10000000;
x77.up = 10000000;
x78.up = 10000000;
x79.up = 10000000;
x80.up = 10000000;
x81.up = 10000000;
x82.up = 10000000;
x83.up = 10000000;
x84.up = 10000000;
x85.up = 10000000;
x86.up = 10000000;
x87.up = 10000000;
x88.up = 10000000;
x89.up = 10000000;
x90.up = 10000000;
x91.up = 10000000;
x92.up = 10000000;
x93.up = 10000000;
x94.up = 10000000;
x95.up = 10000000;
x96.up = 10000000;
x97.up = 10000000;
x98.up = 10000000;
x99.up = 10000000;
x100.up = 10000000;
x101.up = 10000000;
x102.up = 10000000;
x103.up = 10000000;
x104.up = 10000000;
x105.up = 10000000;
x106.up = 10000000;
x107.up = 10000000;
x108.up = 10000000;
x109.up = 10000000;
x110.up = 10000000;
x111.up = 10000000;
x112.up = 10000000;
x113.up = 10000000;
x114.up = 10000000;
x115.up = 10000000;
x116.up = 10000000;
x117.up = 10000000;
x118.up = 10000000;
x119.up = 10000000;
x120.up = 10000000;
x121.up = 10000000;
x122.up = 10000000;
x123.up = 10000000;
x124.up = 10000000;
x125.up = 10000000;
x126.up = 10000000;
x127.up = 10000000;
x128.up = 10000000;
x129.up = 10000000;
x130.up = 10000000;
x131.up = 10000000;
x132.up = 10000000;
x133.up = 10000000;
x134.up = 10000000;
x135.up = 10000000;
x136.up = 10000000;
x137.up = 10000000;
x138.up = 10000000;
x139.up = 10000000;
x140.up = 10000000;
x141.up = 10000000;
x142.up = 10000000;
x143.up = 10000000;
x144.up = 10000000;
x145.up = 10000000;
x146.up = 10000000;
x147.up = 10000000;
x148.up = 10000000;
x149.up = 10000000;
x150.up = 10000000;
x151.up = 10000000;
x152.up = 10000000;
x153.up = 10000000;
x154.up = 10000000;
x155.up = 10000000;
x156.up = 10000000;
x157.up = 10000000;
x158.up = 10000000;
x159.up = 10000000;
x160.up = 10000000;
x161.up = 10000000;
x162.up = 10000000;
x163.up = 10000000;
x164.up = 10000000;
x165.up = 10000000;
x166.up = 10000000;
x167.up = 10000000;
x168.up = 10000000;
x169.up = 10000000;
x170.up = 10000000;
x171.up = 10000000;
x172.up = 10000000;
x173.up = 10000000;
x174.up = 10000000;
x175.up = 10000000;
x176.up = 10000000;
x177.up = 10000000;
x178.up = 10000000;
x179.up = 10000000;
x180.up = 10000000;
x181.up = 10000000;
x182.up = 10000000;
x183.up = 10000000;
x184.up = 10000000;
x185.up = 10000000;
x186.up = 10000000;
x187.up = 10000000;
x188.up = 10000000;
x189.up = 10000000;
x190.up = 10000000;
x191.up = 10000000;
x192.up = 10000000;
x193.up = 10000000;
x194.up = 10000000;
x195.up = 10000000;
x196.up = 10000000;
x197.up = 10000000;
x198.up = 10000000;
x199.up = 10000000;
x200.up = 10000000;
x201.up = 10000000;
x202.up = 10000000;
x203.up = 10000000;
x204.up = 10000000;
x205.lo = -10000000; x205.up = 10000000;
x206.lo = -10000000; x206.up = 10000000;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

