MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance lip

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
5685067.87700000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
5685067.88300000 (ANTIGONE)
5685067.88300000 (BARON)
5685067.87700000 (COUENNE)
5685067.87700000 (LINDO)
5685067.88100000 (SCIP)
26765000.00000000 (SHOT)
Source AIMMS clients
Application Location Item Planning
Added to library 07 Mar 2014
Problem type MBNLP
#Variables 60
#Binary Variables 52
#Integer Variables 0
#Nonlinear Variables 48
#Nonlinear Binary Variables 48
#Nonlinear Integer Variables 0
Objective Sense max
Objective type nonlinear
Objective curvature convex
#Nonzeros in Objective 60
#Nonlinear Nonzeros in Objective 48
#Constraints 83
#Linear Constraints 83
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions vcpower
Constraints curvature linear
#Nonzeros in Jacobian 280
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 576
#Nonzeros in Diagonal of Hessian of Lagrangian 48
#Blocks in Hessian of Lagrangian 4
Minimal blocksize in Hessian of Lagrangian 12
Maximal blocksize in Hessian of Lagrangian 12
Average blocksize in Hessian of Lagrangian 12.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.0000e-01
Maximal coefficient 8.0000e+05
Infeasibility of initial point 6000
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         84       15       17       52        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         61        9       52        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        341      293       48        0
*
*  Solve m using MINLP maximizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,x53
          ,x54,x55,x56,x57,x58,x59,x60,objvar;

Positive Variables  x53,x54,x55,x56,x57,x58,x59,x60;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
          ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
          ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
          ,b52;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84;


e1..    b49 + b50 + b51 + b52 =G= 1;

e2..    b1 + b3 + b5 + b7 =E= 1;

e3..    b2 + b4 + b6 + b8 =E= 1;

e4..    b9 + b11 + b13 + b15 =E= 1;

e5..    b10 + b12 + b14 + b16 =E= 1;

e6..    b17 + b19 + b21 + b23 =E= 1;

e7..    b18 + b20 + b22 + b24 =E= 1;

e8..    b25 + b27 + b29 + b31 =E= 1;

e9..    b26 + b28 + b30 + b32 =E= 1;

e10..    b33 + b35 + b37 + b39 =E= 1;

e11..    b34 + b36 + b38 + b40 =E= 1;

e12..    b41 + b43 + b45 + b47 =E= 1;

e13..    b42 + b44 + b46 + b48 =E= 1;

e14..    b1 - b49 =L= 0;

e15..    b2 - b49 =L= 0;

e16..    b3 - b50 =L= 0;

e17..    b4 - b50 =L= 0;

e18..    b5 - b51 =L= 0;

e19..    b6 - b51 =L= 0;

e20..    b7 - b52 =L= 0;

e21..    b8 - b52 =L= 0;

e22..    b9 - b49 =L= 0;

e23..    b10 - b49 =L= 0;

e24..    b11 - b50 =L= 0;

e25..    b12 - b50 =L= 0;

e26..    b13 - b51 =L= 0;

e27..    b14 - b51 =L= 0;

e28..    b15 - b52 =L= 0;

e29..    b16 - b52 =L= 0;

e30..    b17 - b49 =L= 0;

e31..    b18 - b49 =L= 0;

e32..    b19 - b50 =L= 0;

e33..    b20 - b50 =L= 0;

e34..    b21 - b51 =L= 0;

e35..    b22 - b51 =L= 0;

e36..    b23 - b52 =L= 0;

e37..    b24 - b52 =L= 0;

e38..    b25 - b49 =L= 0;

e39..    b26 - b49 =L= 0;

e40..    b27 - b50 =L= 0;

e41..    b28 - b50 =L= 0;

e42..    b29 - b51 =L= 0;

e43..    b30 - b51 =L= 0;

e44..    b31 - b52 =L= 0;

e45..    b32 - b52 =L= 0;

e46..    b33 - b49 =L= 0;

e47..    b34 - b49 =L= 0;

e48..    b35 - b50 =L= 0;

e49..    b36 - b50 =L= 0;

e50..    b37 - b51 =L= 0;

e51..    b38 - b51 =L= 0;

e52..    b39 - b52 =L= 0;

e53..    b40 - b52 =L= 0;

e54..    b41 - b49 =L= 0;

e55..    b42 - b49 =L= 0;

e56..    b43 - b50 =L= 0;

e57..    b44 - b50 =L= 0;

e58..    b45 - b51 =L= 0;

e59..    b46 - b51 =L= 0;

e60..    b47 - b52 =L= 0;

e61..    b48 - b52 =L= 0;

e62..    b1 + b9 + b17 + b25 + b33 + b41 - b49 =G= 0;

e63..    b2 + b10 + b18 + b26 + b34 + b42 - b49 =G= 0;

e64..    b3 + b11 + b19 + b27 + b35 + b43 - b50 =G= 0;

e65..    b4 + b12 + b20 + b28 + b36 + b44 - b50 =G= 0;

e66..    b5 + b13 + b21 + b29 + b37 + b45 - b51 =G= 0;

e67..    b6 + b14 + b22 + b30 + b38 + b46 - b51 =G= 0;

e68..    b7 + b15 + b23 + b31 + b39 + b47 - b52 =G= 0;

e69..    b8 + b16 + b24 + b32 + b40 + b48 - b52 =G= 0;

e70..  - 5000*b49 + x53 + x54 =L= 0;

e71..  - 3000*b50 + x55 + x56 =L= 0;

e72..  - 3000*b51 + x57 + x58 =L= 0;

e73..  - 2000*b52 + x59 + x60 =L= 0;

e74..    x53 + x55 + x57 + x59 =E= 6000;

e75..    x54 + x56 + x58 + x60 =E= 4800;

e76..  - 1000*b1 - 1000*b9 - 1000*b17 - 1000*b25 - 1000*b33 - 1000*b41 + x53
       =G= 0;

e77..  - 800*b2 - 800*b10 - 800*b18 - 800*b26 - 800*b34 - 800*b42 + x54 =G= 0;

e78..  - 1000*b3 - 1000*b11 - 1000*b19 - 1000*b27 - 1000*b35 - 1000*b43 + x55
       =G= 0;

e79..  - 800*b4 - 800*b12 - 800*b20 - 800*b28 - 800*b36 - 800*b44 + x56 =G= 0;

e80..  - 1000*b5 - 1000*b13 - 1000*b21 - 1000*b29 - 1000*b37 - 1000*b45 + x57
       =G= 0;

e81..  - 800*b6 - 800*b14 - 800*b22 - 800*b30 - 800*b38 - 800*b46 + x58 =G= 0;

e82..  - 1000*b7 - 1000*b15 - 1000*b23 - 1000*b31 - 1000*b39 - 1000*b47 + x59
       =G= 0;

e83..  - 800*b8 - 800*b16 - 800*b24 - 800*b32 - 800*b40 - 800*b48 + x60 =G= 0;

e84.. 39.2*((25*b1 + 25*b2 + 25*b9 + 25*b10 + 25*b17 + 25*b18 + 25*b25 + 25*b26
       + 25*b33 + 25*b34 + 25*b41 + 25*b42)**0.5 + (25*b3 + 25*b4 + 25*b11 + 25
      *b12 + 25*b19 + 25*b20 + 25*b27 + 25*b28 + 25*b35 + 25*b36 + 25*b43 + 25*
      b44)**0.5 + (25*b5 + 25*b6 + 25*b13 + 25*b14 + 25*b21 + 25*b22 + 25*b29
       + 25*b30 + 25*b37 + 25*b38 + 25*b45 + 25*b46)**0.5 + (25*b7 + 25*b8 + 25
      *b15 + 25*b16 + 25*b23 + 25*b24 + 25*b31 + 25*b32 + 25*b39 + 25*b40 + 25*
      b47 + 25*b48)**0.5) - 300000*b1 - 800000*b2 - 300000*b3 - 800000*b4 - 
      300000*b5 - 800000*b6 - 300000*b7 - 800000*b8 - 300000*b9 - 800000*b10 - 
      300000*b11 - 800000*b12 - 300000*b13 - 800000*b14 - 300000*b15 - 800000*
      b16 - 300000*b17 - 800000*b18 - 300000*b19 - 800000*b20 - 300000*b21 - 
      800000*b22 - 300000*b23 - 800000*b24 - 300000*b25 - 800000*b26 - 300000*
      b27 - 800000*b28 - 300000*b29 - 800000*b30 - 300000*b31 - 800000*b32 - 
      300000*b33 - 800000*b34 - 300000*b35 - 800000*b36 - 300000*b37 - 800000*
      b38 - 300000*b39 - 800000*b40 - 300000*b41 - 800000*b42 - 300000*b43 - 
      800000*b44 - 300000*b45 - 800000*b46 - 300000*b47 - 800000*b48 + 100000*
      b1 + 100000*b9 + 100000*b17 + 100000*b25 + 100000*b33 + 100000*b41 + 
      400000*b2 + 400000*b10 + 400000*b18 + 400000*b26 + 400000*b34 + 400000*
      b42 + 100000*b3 + 100000*b11 + 100000*b19 + 100000*b27 + 100000*b35 + 
      100000*b43 + 400000*b4 + 400000*b12 + 400000*b20 + 400000*b28 + 400000*
      b36 + 400000*b44 + 100000*b5 + 100000*b13 + 100000*b21 + 100000*b29 + 
      100000*b37 + 100000*b45 + 400000*b6 + 400000*b14 + 400000*b22 + 400000*
      b30 + 400000*b38 + 400000*b46 + 100000*b7 + 100000*b15 + 100000*b23 + 
      100000*b31 + 100000*b39 + 100000*b47 + 400000*b8 + 400000*b16 + 400000*
      b24 + 400000*b32 + 400000*b40 + 400000*b48 + 4000*b1 + 3200*b2 + 8000*b9
       + 6400*b10 + 8000*b17 + 6400*b18 + 16000*b25 + 12800*b26 + 16000*b33 + 
      12800*b34 + 32000*b41 + 25600*b42 + 8000*b3 + 6400*b4 + 4000*b11 + 3200*
      b12 + 16000*b19 + 12800*b20 + 24000*b27 + 19200*b28 + 8000*b35 + 6400*b36
       + 24000*b43 + 19200*b44 + 16000*b5 + 12800*b6 + 24000*b13 + 19200*b14 + 
      4000*b21 + 3200*b22 + 4000*b29 + 3200*b30 + 16000*b37 + 12800*b38 + 16000
      *b45 + 12800*b46 + 200000*b7 + 160000*b8 + 200000*b15 + 160000*b16 + 
      150000*b23 + 120000*b24 + 50000*b31 + 40000*b32 + 100000*b39 + 80000*b40
       + 25000*b47 + 20000*b48 + 80000*b49 + 80000*b50 + 80000*b51 + 80000*b52
       - 55*x53 - 455*x54 - 50*x55 - 450*x56 - 55*x57 - 455*x58 - 55*x59
       - 455*x60 + objvar =E= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;


Last updated: 2022-04-26 Git hash: de668763
Imprint / Privacy Policy / License: CC-BY 4.0