MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance mathopt3
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
| Referencesⓘ | Mathematica, MathOptimizer - An Advanced Modeling and Optimization System for Mathematica Users. Pinter, J D, Global Optimization in Action - Continuous and Lipschitz Optimization: Algorithms, Implementations, and Applications, Kluwer Acadameic Publishers, 1996. Pinter, J D, Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial, Lionheart Publishing, Atlanta, GA, 2001. |
| Sourceⓘ | GAMS Model Library model mathopt3 |
| Applicationⓘ | Test Problem |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 6 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 6 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | nonconcave |
| #Nonzeros in Objectiveⓘ | 6 |
| #Nonlinear Nonzeros in Objectiveⓘ | 6 |
| #Constraintsⓘ | 7 |
| #Linear Constraintsⓘ | 3 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 3 |
| Operands in Gen. Nonlin. Functionsⓘ | cos mul sin sqr |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 36 |
| #Nonlinear Nonzeros in Jacobianⓘ | 18 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 36 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 6 |
| Average blocksize in Hessian of Lagrangianⓘ | 6.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 1.0000e+01 |
| Infeasibility of initial pointⓘ | 1089 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 8 5 0 3 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 7 7 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 43 19 24 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,objvar;
Equations e1,e2,e3,e4,e5,e6,e7,e8;
e1.. -(sqr(x1 + x2) + sqr(x3 - x5) + sqr(x6 - x4) + 2*sqr(x1 + x3 - x4) + sqr(
x2 - x1 + x3 - x4) + 10*sqr(sin(x1 + x5 - x6))) + objvar =E= 0;
e2.. sqr(x1) - sin(x2) - x4 + x5 + x6 =E= 0;
e3.. x1*x3 - x2*x4*x1 - sin((-x1) - x3 + x6) - x5 =E= 0;
e4.. x2*x6*cos(x5) - sin(x3*x4) + x2 - x5 =E= 0;
e5.. x1*x2 - sqr(x3) - x4*x5 - sqr(x6) =E= 0;
e6.. 2*x1 + 5*x2 + x3 + x4 =L= 1;
e7.. 3*x1 - 2*x2 + x3 - 4*x4 =L= 0;
e8.. x1 + x2 + x3 + x4 + x5 + x6 =L= 2;
* set non-default levels
x1.l = 10;
x2.l = -10;
x3.l = 10;
x4.l = 10;
x5.l = 10;
x6.l = -10;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

