MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance mathopt5_8

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-0.68607228 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-0.68607228 (ANTIGONE)
-0.68607228 (BARON)
-0.68607228 (COUENNE)
-0.68607228 (LINDO)
-0.68607286 (SCIP)
References Mathematica, MathOptimizer - An Advanced Modeling and Optimization System for Mathematica Users.
Pinter, J D, Global Optimization in Action - Continuous and Lipschitz Optimization: Algorithms, Implementations, and Applications, Kluwer Acadameic Publishers, 1996.
Pinter, J D, Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial, Lionheart Publishing, Atlanta, GA, 2001.
Source GAMS Model Library model mathopt5, function f8
Application Test Problem
Added to library 18 Aug 2014
Problem type NLP
#Variables 1
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 1
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type polynomial
Objective curvature nonconcave
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 1
#Constraints 0
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 0
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 1
#Nonzeros in Diagonal of Hessian of Lagrangian 1
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.6667e-01
Maximal coefficient 6.0000e+00
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        1        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          2        2        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          2        1        1        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,objvar;

Equations  e1;


e1.. -(2*sqr(x1) - x1 - 1.05*POWER(x1,4) + 0.1666667*POWER(x1,6)) + objvar
      =E= 0;

* set non-default bounds
x1.lo = -2; x1.up = 2.5;

* set non-default levels
x1.l = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0