MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance mathopt6
The Hundred-dollar, Hundred-digit Challenge Problems as stated by N. Trefethen, Oxford University.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -3.30686865 (COUENNE) -3.30686866 (LINDO) -3.30686941 (SCIP) |
Referencesⓘ | Mathematica, MathOptimizer - An Advanced Modeling and Optimization System for Mathematica Users. Pinter, J D, Global Optimization in Action - Continuous and Lipschitz Optimization: Algorithms, Implementations, and Applications, Kluwer Acadameic Publishers, 1996. Pinter, J D, Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial, Lionheart Publishing, Atlanta, GA, 2001. Trefethen, N, A Hundred-dollar, Hundred-digit Challenge, SIAM News, 35:1, 2002. |
Sourceⓘ | GAMS Model Library model mathopt6 |
Applicationⓘ | Test Problem |
Added to libraryⓘ | 18 Aug 2014 |
Problem typeⓘ | NLP |
#Variablesⓘ | 2 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 0 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | exp sin sqr |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 0 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.5000e-01 |
Maximal coefficientⓘ | 8.0000e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 3 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 3 1 2 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,objvar; Equations e1; e1.. -(exp(sin(50*x1)) + sin(60*exp(x2)) + sin(70*sin(x1)) + sin(sin(80*x2)) - sin(10*x1 + 10*x2) + 0.25*(sqr(x1) + sqr(x2))) + objvar =E= 0; * set non-default bounds x1.lo = -3; x1.up = 3; x2.lo = -3; x2.up = 3; * set non-default levels x1.l = -0.655668942; x2.l = 0.346914252; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f