MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance mathopt6
The Hundred-dollar, Hundred-digit Challenge Problems as stated by N. Trefethen, Oxford University.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -3.30686865 (COUENNE) -3.30686866 (LINDO) -3.30686941 (SCIP) |
| Referencesⓘ | Mathematica, MathOptimizer - An Advanced Modeling and Optimization System for Mathematica Users. Pinter, J D, Global Optimization in Action - Continuous and Lipschitz Optimization: Algorithms, Implementations, and Applications, Kluwer Acadameic Publishers, 1996. Pinter, J D, Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial, Lionheart Publishing, Atlanta, GA, 2001. Trefethen, N, A Hundred-dollar, Hundred-digit Challenge, SIAM News, 35:1, 2002. |
| Sourceⓘ | GAMS Model Library model mathopt6 |
| Applicationⓘ | Test Problem |
| Added to libraryⓘ | 18 Aug 2014 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 2 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 2 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | nonconcave |
| #Nonzeros in Objectiveⓘ | 2 |
| #Nonlinear Nonzeros in Objectiveⓘ | 2 |
| #Constraintsⓘ | 0 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | exp sin sqr |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 0 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
| Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.5000e-01 |
| Maximal coefficientⓘ | 8.0000e+01 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 1 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 3 3 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 3 1 2 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,objvar;
Equations e1;
e1.. -(exp(sin(50*x1)) + sin(60*exp(x2)) + sin(70*sin(x1)) + sin(sin(80*x2)) -
sin(10*x1 + 10*x2) + 0.25*(sqr(x1) + sqr(x2))) + objvar =E= 0;
* set non-default bounds
x1.lo = -3; x1.up = 3;
x2.lo = -3; x2.up = 3;
* set non-default levels
x1.l = -0.655668942;
x2.l = 0.346914252;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

