MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nemhaus
| Formatsⓘ | ams gms lp mod nl osil pip py | 
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 31.00000000 (ANTIGONE) 31.00000000 (BARON) 31.00000000 (COUENNE) 31.00000000 (CPLEX) 31.00000000 (LINDO) 31.00000000 (SCIP) | 
| Referencesⓘ | Carlson, R C and Nemhauser, G L, Scheduling to Minimize Interaction Cost, Operations Research, 14:1, 1966, 52-58. | 
| Sourceⓘ | GAMS Model Library model nemhaus | 
| Applicationⓘ | Job Scheduling | 
| Added to libraryⓘ | 31 Jul 2001 | 
| Problem typeⓘ | QP | 
| #Variablesⓘ | 5 | 
| #Binary Variablesⓘ | 0 | 
| #Integer Variablesⓘ | 0 | 
| #Nonlinear Variablesⓘ | 5 | 
| #Nonlinear Binary Variablesⓘ | 0 | 
| #Nonlinear Integer Variablesⓘ | 0 | 
| Objective Senseⓘ | min | 
| Objective typeⓘ | quadratic | 
| Objective curvatureⓘ | indefinite | 
| #Nonzeros in Objectiveⓘ | 5 | 
| #Nonlinear Nonzeros in Objectiveⓘ | 5 | 
| #Constraintsⓘ | 5 | 
| #Linear Constraintsⓘ | 5 | 
| #Quadratic Constraintsⓘ | 0 | 
| #Polynomial Constraintsⓘ | 0 | 
| #Signomial Constraintsⓘ | 0 | 
| #General Nonlinear Constraintsⓘ | 0 | 
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear | 
| #Nonzeros in Jacobianⓘ | 5 | 
| #Nonlinear Nonzeros in Jacobianⓘ | 0 | 
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 18 | 
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 | 
| #Blocks in Hessian of Lagrangianⓘ | 1 | 
| Minimal blocksize in Hessian of Lagrangianⓘ | 5 | 
| Maximal blocksize in Hessian of Lagrangianⓘ | 5 | 
| Average blocksize in Hessian of Lagrangianⓘ | 5.0 | 
| #Semicontinuitiesⓘ | 0 | 
| #Nonlinear Semicontinuitiesⓘ | 0 | 
| #SOS type 1ⓘ | 0 | 
| #SOS type 2ⓘ | 0 | 
| Minimal coefficientⓘ | 1.0000e+00 | 
| Maximal coefficientⓘ | 6.0000e+00 | 
| Infeasibility of initial pointⓘ | 1 | 
| Sparsity Jacobianⓘ |  | 
| Sparsity Hessian of Lagrangianⓘ |  | 
$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          6        6        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          6        6        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         11        6        5        0
*
*  Solve m using NLP minimizing objvar;
Variables  objvar,x2,x3,x4,x5,x6;
Positive Variables  x2,x3,x4,x5,x6;
Equations  e1,e2,e3,e4,e5,e6;
e1.. -(2*x2*x4 + 4*x2*x5 + 3*x2*x6 + 6*x3*x4 + 2*x3*x5 + 3*x3*x6 + 5*x4*x5 + 3*
     x4*x6 + 3*x5*x6) + objvar =E= 0;
e2..    x2 =E= 1;
e3..    x3 =E= 1;
e4..    x4 =E= 1;
e5..    x5 =E= 1;
e6..    x6 =E= 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc