MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nvs03
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 16.00000000 (ALPHAECP) 16.00000000 (ANTIGONE) 16.00000000 (BARON) 16.00000000 (BONMIN) 16.00000000 (COUENNE) 16.00000000 (CPLEX) 16.00000000 (GUROBI) 16.00000000 (LINDO) 16.00000000 (SCIP) 16.00000000 (SHOT) |
Referencesⓘ | Gupta, Omprakash K and Ravindran, A, Branch and Bound Experiments in Convex Nonlinear Integer Programming, Management Science, 13:12, 1985, 1533-1546. Tawarmalani, M and Sahinidis, N V, Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs. In Pardalos, Panos M and Romeijn, H Edwin, Eds, Handbook of Global Optimization - Volume 2: Heuristic Approaches, Kluwer Academic Publishers, 65-85. Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. |
Sourceⓘ | BARON book instance gupta/gupta03 |
Added to libraryⓘ | 25 Jul 2002 |
Problem typeⓘ | IQCQP |
#Variablesⓘ | 2 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 2 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 2 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 2 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 4 |
#Nonlinear Nonzeros in Jacobianⓘ | 1 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 2 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 8.0000e+00 |
Infeasibility of initial pointⓘ | 900 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 3 1 2 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 1 0 2 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 7 4 3 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,objvar; Integer Variables i1,i2; Equations e1,e2,e3; e1.. -0.1*sqr(i1) + i2 =G= 0; e2.. - 0.333333333333333*i1 - i2 =G= -4.5; e3.. -(sqr((-8) + i1) + sqr((-2) + i2)) + objvar =E= 0; * set non-default bounds i1.up = 200; i2.up = 200; * set non-default levels i1.l = 100; i2.l = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f