MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nvs07
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 4.00000000 (ANTIGONE) 4.00000000 (BARON) 4.00000000 (COUENNE) 4.00000000 (LINDO) 4.00000000 (SCIP) 3.00000000 (SHOT) |
| Referencesⓘ | Gupta, Omprakash K and Ravindran, A, Branch and Bound Experiments in Convex Nonlinear Integer Programming, Management Science, 13:12, 1985, 1533-1546. Tawarmalani, M and Sahinidis, N V, Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs. In Pardalos, Panos M and Romeijn, H Edwin, Eds, Handbook of Global Optimization - Volume 2: Heuristic Approaches, Kluwer Academic Publishers, 65-85. Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. |
| Sourceⓘ | BARON book instance gupta/gupta07 |
| Added to libraryⓘ | 25 Jul 2002 |
| Problem typeⓘ | INLP |
| #Variablesⓘ | 3 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 3 |
| #Nonlinear Variablesⓘ | 2 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 2 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 3 |
| #Nonlinear Nonzeros in Objectiveⓘ | 1 |
| #Constraintsⓘ | 2 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 1 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 5 |
| #Nonlinear Nonzeros in Jacobianⓘ | 2 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
| Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 5.0000e+00 |
| Infeasibility of initial pointⓘ | 2.66 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting * * Equation counts * Total E G L N X C B * 3 1 2 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 4 1 0 3 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 9 6 3 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,objvar; Integer Variables i1,i2,i3; Equations e1,e2,e3; e1.. sqr(i3)*i2 + 5*i3 + 3*i1 =G= 10; e2.. i1 - i3 =G= 2.66; e3.. -2*sqr(i2) - i1 - 5*i3 + objvar =E= 0; * set non-default bounds i1.up = 200; i2.up = 200; i3.up = 200; * set non-default levels i1.l = 1; i2.l = 1; i3.l = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

