MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nvs18
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -778.40000000 (ANTIGONE) -778.40000000 (BARON) -778.40000000 (COUENNE) -778.40000000 (GUROBI) -778.40000000 (LINDO) -778.40000000 (SCIP) -778.40000030 (SHOT) |
| Referencesⓘ | Gupta, Omprakash K and Ravindran, A, Branch and Bound Experiments in Convex Nonlinear Integer Programming, Management Science, 13:12, 1985, 1533-1546. Tawarmalani, M and Sahinidis, N V, Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs. In Pardalos, Panos M and Romeijn, H Edwin, Eds, Handbook of Global Optimization - Volume 2: Heuristic Approaches, Kluwer Academic Publishers, 65-85. Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. |
| Sourceⓘ | BARON book instance gupta/gupta18 |
| Added to libraryⓘ | 25 Jul 2002 |
| Problem typeⓘ | IQCQP |
| #Variablesⓘ | 6 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 6 |
| #Nonlinear Variablesⓘ | 6 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 6 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 6 |
| #Nonlinear Nonzeros in Objectiveⓘ | 6 |
| #Constraintsⓘ | 6 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 6 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 36 |
| #Nonlinear Nonzeros in Jacobianⓘ | 36 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 36 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 6 |
| Average blocksize in Hessian of Lagrangianⓘ | 6.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.0000e-01 |
| Maximal coefficientⓘ | 1.0480e+02 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 7 1 6 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 7 1 0 6 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 43 1 42 0
*
* Solve m using MINLP minimizing objvar;
Variables i1,i2,i3,i4,i5,i6,objvar;
Integer Variables i1,i2,i3,i4,i5,i6;
Equations e1,e2,e3,e4,e5,e6,e7;
e1.. (-9*sqr(i1)) - 10*i1*i2 - 8*sqr(i2) - 5*sqr(i3) - 6*i3*i1 - 10*i3*i2 - 7*
sqr(i4) - 10*i4*i1 - 6*i4*i2 - 2*i4*i3 - 2*i5*i2 - 7*sqr(i5) - 6*i6*i1 - 2
*i6*i2 - 2*i6*i4 - 5*sqr(i6) =G= -1800;
e2.. (-6*sqr(i1)) - 8*i1*i2 - 6*sqr(i2) - 4*sqr(i3) - 2*i3*i1 - 2*i3*i2 - 8*
sqr(i4) + 2*i4*i1 + 10*i4*i2 - 2*i5*i1 - 6*i5*i2 + 6*i5*i4 + 7*sqr(i5) - 2
*i6*i2 + 8*i6*i3 + 2*i6*i4 - 4*i6*i5 - 8*sqr(i6) =G= -1520;
e3.. (-9*sqr(i1)) - 6*sqr(i2) - 8*sqr(i3) + 2*i2*i1 + 2*i3*i2 - 6*sqr(i4) + 4*
i4*i1 + 4*i4*i2 - 2*i4*i3 - 6*i5*i1 - 2*i5*i2 + 4*i5*i4 + 6*sqr(i5) + 2*i6
*i1 + 4*i6*i2 - 6*i6*i4 - 2*i6*i5 - 5*sqr(i6) =G= -1000;
e4.. (-8*sqr(i1)) - 4*sqr(i2) - 9*sqr(i3) - 7*sqr(i4) - 2*i2*i1 - 2*i3*i1 - 4*
i3*i2 + 6*i4*i1 + 2*i4*i2 - 2*i4*i3 - 6*i5*i1 - 4*i5*i2 - 2*i5*i3 + 6*i5*
i4 + 6*sqr(i5) - 10*i6*i1 - 10*i6*i3 + 4*i6*i4 - 2*i6*i5 - 7*sqr(i6)
=G= -1745;
e5.. 2*i2*i1 - 4*sqr(i1) - 5*sqr(i2) - 6*i3*i1 - 8*sqr(i3) - 2*i4*i1 + 6*i4*i2
- 2*i4*i3 - 6*sqr(i4) - 4*i5*i1 + 2*i5*i2 - 6*i5*i3 - 8*i5*i4 - 7*sqr(i5)
+ 4*i6*i1 - 4*i6*i2 + 6*i6*i3 + 4*i6*i5 - 7*sqr(i6) =G= -1070;
e6.. 2*i2*i1 - 7*sqr(i1) - 7*sqr(i2) - 6*i3*i1 - 2*i3*i2 - 6*sqr(i3) - 2*i4*i1
+ 2*i4*i2 - 2*i4*i3 - 5*sqr(i4) - 2*i5*i1 - 4*i5*i3 + 2*i5*i4 - 5*sqr(i5)
+ 2*i6*i1 - 4*i6*i2 + 4*i6*i3 + 2*i6*i4 + 6*i6*i5 - 9*sqr(i6) =G= -990;
e7.. -(7*sqr(i1) + 6*sqr(i2) + 0.2*i1 - 53.6*i2 + 8*sqr(i3) - 6*i3*i1 + 4*i3*i2
+ 4.4*i3 + 6*sqr(i4) + 2*i4*i1 + 2*i4*i3 - 24.8*i4 + 7*sqr(i5) - 4*i5*i1
- 2*i5*i2 - 6*i5*i3 - 104.8*i5 + 4*sqr(i6) + 2*i6*i1 - 4*i6*i2 - 4*i6*i3
- 2*i6*i4 + 6*i6*i5 - 56.4*i6) + objvar =E= 0;
* set non-default bounds
i1.up = 200;
i2.up = 200;
i3.up = 200;
i4.up = 200;
i5.up = 200;
i6.up = 200;
* set non-default levels
i1.l = 1;
i2.l = 1;
i3.l = 1;
i4.l = 1;
i5.l = 1;
i6.l = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

