MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nvs18
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -778.40000000 (ANTIGONE) -778.40000000 (BARON) -778.40000000 (COUENNE) -778.40000000 (GUROBI) -778.40000000 (LINDO) -778.40000000 (SCIP) -778.40000030 (SHOT) |
Referencesⓘ | Gupta, Omprakash K and Ravindran, A, Branch and Bound Experiments in Convex Nonlinear Integer Programming, Management Science, 13:12, 1985, 1533-1546. Tawarmalani, M and Sahinidis, N V, Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs. In Pardalos, Panos M and Romeijn, H Edwin, Eds, Handbook of Global Optimization - Volume 2: Heuristic Approaches, Kluwer Academic Publishers, 65-85. Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. |
Sourceⓘ | BARON book instance gupta/gupta18 |
Added to libraryⓘ | 25 Jul 2002 |
Problem typeⓘ | IQCQP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 6 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 6 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 6 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 6 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 36 |
#Nonlinear Nonzeros in Jacobianⓘ | 36 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 36 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
Maximal blocksize in Hessian of Lagrangianⓘ | 6 |
Average blocksize in Hessian of Lagrangianⓘ | 6.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0000e-01 |
Maximal coefficientⓘ | 1.0480e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 7 1 6 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 1 0 6 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 43 1 42 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,i4,i5,i6,objvar; Integer Variables i1,i2,i3,i4,i5,i6; Equations e1,e2,e3,e4,e5,e6,e7; e1.. (-9*sqr(i1)) - 10*i1*i2 - 8*sqr(i2) - 5*sqr(i3) - 6*i3*i1 - 10*i3*i2 - 7* sqr(i4) - 10*i4*i1 - 6*i4*i2 - 2*i4*i3 - 2*i5*i2 - 7*sqr(i5) - 6*i6*i1 - 2 *i6*i2 - 2*i6*i4 - 5*sqr(i6) =G= -1800; e2.. (-6*sqr(i1)) - 8*i1*i2 - 6*sqr(i2) - 4*sqr(i3) - 2*i3*i1 - 2*i3*i2 - 8* sqr(i4) + 2*i4*i1 + 10*i4*i2 - 2*i5*i1 - 6*i5*i2 + 6*i5*i4 + 7*sqr(i5) - 2 *i6*i2 + 8*i6*i3 + 2*i6*i4 - 4*i6*i5 - 8*sqr(i6) =G= -1520; e3.. (-9*sqr(i1)) - 6*sqr(i2) - 8*sqr(i3) + 2*i2*i1 + 2*i3*i2 - 6*sqr(i4) + 4* i4*i1 + 4*i4*i2 - 2*i4*i3 - 6*i5*i1 - 2*i5*i2 + 4*i5*i4 + 6*sqr(i5) + 2*i6 *i1 + 4*i6*i2 - 6*i6*i4 - 2*i6*i5 - 5*sqr(i6) =G= -1000; e4.. (-8*sqr(i1)) - 4*sqr(i2) - 9*sqr(i3) - 7*sqr(i4) - 2*i2*i1 - 2*i3*i1 - 4* i3*i2 + 6*i4*i1 + 2*i4*i2 - 2*i4*i3 - 6*i5*i1 - 4*i5*i2 - 2*i5*i3 + 6*i5* i4 + 6*sqr(i5) - 10*i6*i1 - 10*i6*i3 + 4*i6*i4 - 2*i6*i5 - 7*sqr(i6) =G= -1745; e5.. 2*i2*i1 - 4*sqr(i1) - 5*sqr(i2) - 6*i3*i1 - 8*sqr(i3) - 2*i4*i1 + 6*i4*i2 - 2*i4*i3 - 6*sqr(i4) - 4*i5*i1 + 2*i5*i2 - 6*i5*i3 - 8*i5*i4 - 7*sqr(i5) + 4*i6*i1 - 4*i6*i2 + 6*i6*i3 + 4*i6*i5 - 7*sqr(i6) =G= -1070; e6.. 2*i2*i1 - 7*sqr(i1) - 7*sqr(i2) - 6*i3*i1 - 2*i3*i2 - 6*sqr(i3) - 2*i4*i1 + 2*i4*i2 - 2*i4*i3 - 5*sqr(i4) - 2*i5*i1 - 4*i5*i3 + 2*i5*i4 - 5*sqr(i5) + 2*i6*i1 - 4*i6*i2 + 4*i6*i3 + 2*i6*i4 + 6*i6*i5 - 9*sqr(i6) =G= -990; e7.. -(7*sqr(i1) + 6*sqr(i2) + 0.2*i1 - 53.6*i2 + 8*sqr(i3) - 6*i3*i1 + 4*i3*i2 + 4.4*i3 + 6*sqr(i4) + 2*i4*i1 + 2*i4*i3 - 24.8*i4 + 7*sqr(i5) - 4*i5*i1 - 2*i5*i2 - 6*i5*i3 - 104.8*i5 + 4*sqr(i6) + 2*i6*i1 - 4*i6*i2 - 4*i6*i3 - 2*i6*i4 + 6*i6*i5 - 56.4*i6) + objvar =E= 0; * set non-default bounds i1.up = 200; i2.up = 200; i3.up = 200; i4.up = 200; i5.up = 200; i6.up = 200; * set non-default levels i1.l = 1; i2.l = 1; i3.l = 1; i4.l = 1; i5.l = 1; i6.l = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f