MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nvs23
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1125.20000000 (ANTIGONE) -1125.20000000 (BARON) -1125.20000000 (COUENNE) -1125.20000000 (GUROBI) -1474.66511600 (LINDO) -1125.20000000 (SCIP) -1125.20000200 (SHOT) |
Referencesⓘ | Gupta, Omprakash K and Ravindran, A, Branch and Bound Experiments in Convex Nonlinear Integer Programming, Management Science, 13:12, 1985, 1533-1546. Tawarmalani, M and Sahinidis, N V, Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs. In Pardalos, Panos M and Romeijn, H Edwin, Eds, Handbook of Global Optimization - Volume 2: Heuristic Approaches, Kluwer Academic Publishers, 65-85. Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. |
Sourceⓘ | BARON book instance gupta/gupta23 |
Added to libraryⓘ | 25 Jul 2002 |
Problem typeⓘ | IQCQP |
#Variablesⓘ | 9 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 9 |
#Nonlinear Variablesⓘ | 9 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 9 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 9 |
#Nonlinear Nonzeros in Objectiveⓘ | 9 |
#Constraintsⓘ | 9 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 9 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 81 |
#Nonlinear Nonzeros in Jacobianⓘ | 81 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 81 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 9 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 9 |
Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
Average blocksize in Hessian of Lagrangianⓘ | 9.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0000e-01 |
Maximal coefficientⓘ | 1.1840e+02 |
Infeasibility of initial pointⓘ | 1.068e+06 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 10 1 9 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 1 0 9 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 91 1 90 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,objvar; Integer Variables i1,i2,i3,i4,i5,i6,i7,i8,i9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10; e1.. (-9*sqr(i1)) - 10*i1*i2 - 8*sqr(i2) - 5*sqr(i3) - 6*i3*i1 - 10*i3*i2 - 7* sqr(i4) - 10*i4*i1 - 6*i4*i2 - 2*i4*i3 - 2*i5*i2 - 7*sqr(i5) - 6*i6*i1 - 2 *i6*i2 - 2*i6*i4 - 5*sqr(i6) + 6*i7*i1 + 2*i7*i2 + 4*i7*i3 + 2*i7*i4 - 4* i7*i5 + 4*i7*i6 - 8*sqr(i7) - 2*i8*i1 - 8*i8*i2 - 2*i8*i3 + 6*i8*i5 - 2*i8 *i7 - 6*sqr(i8) + 2*i9*i3 - 4*i9*i4 + 8*i9*i5 + 4*i9*i6 - 6*i9*i8 - 6*sqr( i9) =G= -1850; e2.. (-6*sqr(i1)) - 8*i1*i2 - 6*sqr(i2) - 4*sqr(i3) - 2*i3*i1 - 2*i3*i2 - 8* sqr(i4) + 2*i4*i1 + 10*i4*i2 - 2*i5*i1 - 6*i5*i2 + 6*i5*i4 + 7*sqr(i5) - 2 *i6*i2 + 8*i6*i3 + 2*i6*i4 - 4*i6*i5 - 8*sqr(i6) - 6*i7*i1 - 10*i7*i2 - 2* i7*i3 + 10*i7*i4 - 10*i7*i5 - 8*sqr(i7) - 2*i8*i1 - 4*i8*i2 - 2*i8*i3 - 8* i8*i5 - 8*i8*i7 - 5*sqr(i8) - 2*i9*i1 - 2*i9*i2 + 4*i9*i6 + 2*i9*i7 - 6* sqr(i9) =G= -3170; e3.. (-9*sqr(i1)) - 6*sqr(i2) - 8*sqr(i3) + 2*i2*i1 + 2*i3*i2 - 6*sqr(i4) + 4* i4*i1 + 4*i4*i2 - 2*i4*i3 - 6*i5*i1 - 2*i5*i2 + 4*i5*i4 + 6*sqr(i5) + 2*i6 *i1 + 4*i6*i2 - 6*i6*i4 - 2*i6*i5 - 5*sqr(i6) + 2*i7*i2 - 4*i7*i3 - 6*i7* i5 - 4*i7*i6 - 7*sqr(i7) - 2*i8*i1 + 4*i8*i3 + 2*i8*i4 - 4*sqr(i8) + 10*i9 *i1 + 6*i9*i2 - 4*i9*i3 - 10*i9*i4 + 8*i9*i5 - 6*i9*i6 - 2*i9*i7 - 8*sqr( i9) =G= -1770; e4.. (-8*sqr(i1)) - 4*sqr(i2) - 9*sqr(i3) - 7*sqr(i4) - 2*i2*i1 - 2*i3*i1 - 4* i3*i2 + 6*i4*i1 + 2*i4*i2 - 2*i4*i3 - 6*i5*i1 - 4*i5*i2 - 2*i5*i3 + 6*i5* i4 + 6*sqr(i5) - 10*i6*i1 - 10*i6*i3 + 4*i6*i4 - 2*i6*i5 - 7*sqr(i6) + 6* i7*i1 - 2*i7*i2 - 2*i7*i3 + 6*i7*i5 + 2*i7*i6 - 6*sqr(i7) + 4*i8*i1 - 4*i8 *i2 + 2*i8*i3 - 4*i8*i4 - 4*i8*i5 + 8*i8*i6 + 6*i8*i6 - 8*sqr(i8) - 4*i9* i1 + 4*i9*i2 + 6*i9*i3 - 2*i9*i4 + 2*i9*i6 + 8*i9*i7 - 4*i9*i8 - 10*sqr(i9 ) =G= -1460; e5.. 2*i2*i1 - 4*sqr(i1) - 5*sqr(i2) - 6*i3*i1 - 8*sqr(i3) - 2*i4*i1 + 6*i4*i2 - 2*i4*i3 - 6*sqr(i4) - 4*i5*i1 + 2*i5*i2 - 6*i5*i3 - 8*i5*i4 - 7*sqr(i5) + 4*i6*i1 - 4*i6*i2 + 6*i6*i3 + 4*i6*i5 - 7*sqr(i6) + 4*i7*i1 - 4*i7*i2 - 4*i7*i3 + 4*i7*i4 + 4*i7*i5 + 4*i7*i6 - 8*sqr(i7) - 2*i8*i1 + 4*i8*i4 + 2*i8*i6 + 2*i8*i7 - 4*sqr(i8) - 2*i9*i2 + 4*i9*i3 + 4*i9*i4 - 2*i9*i5 + 2*i9*i6 + 6*i9*i7 - 6*i9*i8 - 7*sqr(i9) =G= -1140; e6.. 2*i2*i1 - 7*sqr(i1) - 7*sqr(i2) - 6*i3*i1 - 2*i3*i2 - 6*sqr(i3) - 2*i4*i1 + 2*i4*i2 - 2*i4*i3 - 5*sqr(i4) - 2*i5*i1 - 4*i5*i3 + 2*i5*i4 - 5*sqr(i5) + 2*i6*i1 - 4*i6*i2 + 4*i6*i3 + 2*i6*i4 + 6*i6*i5 - 9*sqr(i6) + 4*i7*i2 - 4*i7*i3 + 4*i7*i4 - 4*i7*i5 + 8*i7*i6 - 5*sqr(i7) + 4*i8*i1 + 8*i8*i2 + 2*i8*i3 - 4*i8*i4 - 2*i8*i5 + 4*i8*i6 - 9*sqr(i8) - 4*i9*i1 + 2*i9*i4 + 6*i9*i5 - 4*i9*i6 - 2*i9*i7 + 2*i9*i8 - 6*sqr(i9) =G= -940; e7.. (-9*sqr(i1)) - 4*i2*i1 - 8*sqr(i2) + 4*i3*i1 + 2*i3*i2 - 7*sqr(i3) + 4*i4* i1 + 4*i4*i3 - 7*sqr(i4) - 2*i5*i1 - 12*i5*i2 - 4*i5*i3 - 8*sqr(i5) - 8*i6 *i1 + 2*i6*i2 - 2*i6*i5 - 6*sqr(i6) - 4*i7*i1 - 6*i7*i2 - 2*i7*i3 + 10*i7* i4 - 2*i7*i5 + 2*i7*i6 - 7*sqr(i7) - 2*i8*i1 + 2*i8*i2 + 2*i8*i3 + 2*i8*i4 - 6*i8*i6 - 2*i8*i7 - 6*sqr(i8) + 4*i9*i1 + 2*i9*i2 + 4*i9*i3 + 4*i9*i4 + 2*i9*i5 - 2*i9*i6 - 8*sqr(i9) =G= -2720; e8.. 4*i2*i1 - 7*sqr(i1) - 8*sqr(i2) + 4*i3*i1 - 8*sqr(i3) + 4*i4*i1 + 8*i4*i2 - 6*i4*i3 - 7*sqr(i4) - 2*i5*i2 + 2*i5*i4 - 5*sqr(i5) - 2*i6*i1 - 2*i6*i2 + 4*i6*i4 - 4*i6*i5 - 7*sqr(i6) - 2*i7*i1 + 8*i7*i2 - 2*i7*i3 - 2*i7*i4 + 6*i7*i5 + 2*i7*i6 - 7*sqr(i7) + 2*i8*i1 - 6*i8*i2 + 6*i8*i3 + 4*i8*i4 + 2*i8*i5 - 4*i8*i6 - 6*sqr(i8) + 4*i9*i1 - 6*i9*i2 + 2*i9*i3 - 2*i9*i4 + 2*i9*i5 + 6*i9*i6 + 2*i9*i7 - 4*i9*i8 - 6*sqr(i9) =G= -870; e9.. 2*i2*i1 - 4*sqr(i1) - 7*sqr(i2) + 8*i3*i1 - 4*i3*i2 - 9*sqr(i3) - 2*i4*i1 - 4*i4*i2 - 2*i4*i3 - 6*sqr(i4) + 4*i5*i1 + 2*i5*i2 + 4*i5*i3 + 6*i5*i4 - 6*sqr(i5) + 4*i6*i3 - 6*i6*i4 - 7*sqr(i6) - 2*i7*i2 - 4*i7*i3 + 4*i7*i5 + 8*i7*i6 - 7*sqr(i7) + 2*i8*i2 - 4*i8*i3 + 2*i8*i4 + 2*i8*i5 + 6*i8*i7 - 7*sqr(i8) + 4*i9*i1 + 2*i9*i2 - 10*i9*i3 + 2*i9*i5 + 2*i9*i6 - 8*i9*i8 - 6*sqr(i9) =G= -670; e10.. -(7*sqr(i1) + 6*sqr(i2) + 24.4*i1 - 0.2*i2 + 8*sqr(i3) - 6*i3*i1 + 4*i3* i2 + i3 + 6*sqr(i4) + 2*i4*i1 + 2*i4*i3 - 39.2*i4 + 7*sqr(i5) - 4*i5*i1 - 2*i5*i2 - 6*i5*i3 - 118.4*i5 + 4*sqr(i6) + 2*i6*i1 - 4*i6*i2 - 4*i6*i3 - 2*i6*i4 + 6*i6*i5 - 73*i6 + 6*sqr(i7) - 2*i7*i1 - 6*i7*i2 - 2*i7*i3 + 4*i7*i5 + 4*i7*i6 - 110.8*i7 + 7*sqr(i8) - 4*i8*i1 - 2*i8*i2 + 6*i8*i3 + 4*i8*i4 - 4*i8*i5 - 2*i8*i6 + 4*i8*i7 - 17.8*i8 + 8*sqr(i9) - 2*i9*i1 - 4 *i9*i2 + 4*i9*i3 + 4*i9*i4 - 4*i9*i5 - 4*i9*i6 + 8*i9*i7 + 4*i9*i8 - 29.4 *i9) + objvar =E= 0; * set non-default bounds i1.up = 200; i2.up = 200; i3.up = 200; i4.up = 200; i5.up = 200; i6.up = 200; i7.up = 200; i8.up = 200; i9.up = 200; * set non-default levels i1.l = 100; i2.l = 100; i3.l = 100; i4.l = 100; i5.l = 100; i6.l = 100; i7.l = 100; i8.l = 100; i9.l = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f