MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pindyck
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -15462.80394000 (ANTIGONE) -2622.75137300 (BARON) -1911.71985800 (COUENNE) -1889.88836700 (LINDO) -1437.94113400 (SCIP) |
Referencesⓘ | Pindyck, R S, Gains to Producers from the Cartelization of Exhaustible Resources, The Review of Economics and Statistics, 60:2, 1978, 238-251. |
Sourceⓘ | GAMS Model Library model pindyck |
Applicationⓘ | Production |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 116 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 64 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 16 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 96 |
#Linear Constraintsⓘ | 64 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 16 |
#General Nonlinear Constraintsⓘ | 16 |
Operands in Gen. Nonlin. Functionsⓘ | cvpower mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 320 |
#Nonlinear Nonzeros in Jacobianⓘ | 80 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 128 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 32 |
#Blocks in Hessian of Lagrangianⓘ | 16 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 4.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 2.5000e+02 |
Infeasibility of initial pointⓘ | 148.4 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 97 97 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 117 117 0 0 0 0 0 0 * FX 4 * * Nonzero counts * Total const NL DLL * 337 257 80 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x52,x53,x54 ,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71 ,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x85,x86,x87,x88,x89 ,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97; e1.. 0.13*x1 - 0.87*x17 + x18 =E= 3.3; e2.. 0.13*x2 - 0.87*x18 + x19 =E= 3.3345; e3.. 0.13*x3 - 0.87*x19 + x20 =E= 3.3695175; e4.. 0.13*x4 - 0.87*x20 + x21 =E= 3.4050602625; e5.. 0.13*x5 - 0.87*x21 + x22 =E= 3.4411361664375; e6.. 0.13*x6 - 0.87*x22 + x23 =E= 3.47775320893406; e7.. 0.13*x7 - 0.87*x23 + x24 =E= 3.51491950706807; e8.. 0.13*x8 - 0.87*x24 + x25 =E= 3.55264329967409; e9.. 0.13*x9 - 0.87*x25 + x26 =E= 3.5909329491692; e10.. 0.13*x10 - 0.87*x26 + x27 =E= 3.62979694340674; e11.. 0.13*x11 - 0.87*x27 + x28 =E= 3.66924389755784; e12.. 0.13*x12 - 0.87*x28 + x29 =E= 3.70928255602121; e13.. 0.13*x13 - 0.87*x29 + x30 =E= 3.74992179436153; e14.. 0.13*x14 - 0.87*x30 + x31 =E= 3.79117062127695; e15.. 0.13*x15 - 0.87*x31 + x32 =E= 3.8330381805961; e16.. 0.13*x16 - 0.87*x32 + x33 =E= 3.87553375330505; e17.. -1.02**(-0.142857142857143*x52)*(1.1 + 0.1*x1) - 0.75*x34 + x35 =E= 0; e18.. -1.02**(-0.142857142857143*x53)*(1.1 + 0.1*x2) - 0.75*x35 + x36 =E= 0; e19.. -1.02**(-0.142857142857143*x54)*(1.1 + 0.1*x3) - 0.75*x36 + x37 =E= 0; e20.. -1.02**(-0.142857142857143*x55)*(1.1 + 0.1*x4) - 0.75*x37 + x38 =E= 0; e21.. -1.02**(-0.142857142857143*x56)*(1.1 + 0.1*x5) - 0.75*x38 + x39 =E= 0; e22.. -1.02**(-0.142857142857143*x57)*(1.1 + 0.1*x6) - 0.75*x39 + x40 =E= 0; e23.. -1.02**(-0.142857142857143*x58)*(1.1 + 0.1*x7) - 0.75*x40 + x41 =E= 0; e24.. -1.02**(-0.142857142857143*x59)*(1.1 + 0.1*x8) - 0.75*x41 + x42 =E= 0; e25.. -1.02**(-0.142857142857143*x60)*(1.1 + 0.1*x9) - 0.75*x42 + x43 =E= 0; e26.. -1.02**(-0.142857142857143*x61)*(1.1 + 0.1*x10) - 0.75*x43 + x44 =E= 0; e27.. -1.02**(-0.142857142857143*x62)*(1.1 + 0.1*x11) - 0.75*x44 + x45 =E= 0; e28.. -1.02**(-0.142857142857143*x63)*(1.1 + 0.1*x12) - 0.75*x45 + x46 =E= 0; e29.. -1.02**(-0.142857142857143*x64)*(1.1 + 0.1*x13) - 0.75*x46 + x47 =E= 0; e30.. -1.02**(-0.142857142857143*x65)*(1.1 + 0.1*x14) - 0.75*x47 + x48 =E= 0; e31.. -1.02**(-0.142857142857143*x66)*(1.1 + 0.1*x15) - 0.75*x48 + x49 =E= 0; e32.. -1.02**(-0.142857142857143*x67)*(1.1 + 0.1*x16) - 0.75*x49 + x50 =E= 0; e33.. - x35 - x51 + x52 =E= 0; e34.. - x36 - x52 + x53 =E= 0; e35.. - x37 - x53 + x54 =E= 0; e36.. - x38 - x54 + x55 =E= 0; e37.. - x39 - x55 + x56 =E= 0; e38.. - x40 - x56 + x57 =E= 0; e39.. - x41 - x57 + x58 =E= 0; e40.. - x42 - x58 + x59 =E= 0; e41.. - x43 - x59 + x60 =E= 0; e42.. - x44 - x60 + x61 =E= 0; e43.. - x45 - x61 + x62 =E= 0; e44.. - x46 - x62 + x63 =E= 0; e45.. - x47 - x63 + x64 =E= 0; e46.. - x48 - x64 + x65 =E= 0; e47.. - x49 - x65 + x66 =E= 0; e48.. - x50 - x66 + x67 =E= 0; e49.. - x18 + x35 + x68 =E= 0; e50.. - x19 + x36 + x69 =E= 0; e51.. - x20 + x37 + x70 =E= 0; e52.. - x21 + x38 + x71 =E= 0; e53.. - x22 + x39 + x72 =E= 0; e54.. - x23 + x40 + x73 =E= 0; e55.. - x24 + x41 + x74 =E= 0; e56.. - x25 + x42 + x75 =E= 0; e57.. - x26 + x43 + x76 =E= 0; e58.. - x27 + x44 + x77 =E= 0; e59.. - x28 + x45 + x78 =E= 0; e60.. - x29 + x46 + x79 =E= 0; e61.. - x30 + x47 + x80 =E= 0; e62.. - x31 + x48 + x81 =E= 0; e63.. - x32 + x49 + x82 =E= 0; e64.. - x33 + x50 + x83 =E= 0; e65.. x68 - x84 + x85 =E= 0; e66.. x69 - x85 + x86 =E= 0; e67.. x70 - x86 + x87 =E= 0; e68.. x71 - x87 + x88 =E= 0; e69.. x72 - x88 + x89 =E= 0; e70.. x73 - x89 + x90 =E= 0; e71.. x74 - x90 + x91 =E= 0; e72.. x75 - x91 + x92 =E= 0; e73.. x76 - x92 + x93 =E= 0; e74.. x77 - x93 + x94 =E= 0; e75.. x78 - x94 + x95 =E= 0; e76.. x79 - x95 + x96 =E= 0; e77.. x80 - x96 + x97 =E= 0; e78.. x81 - x97 + x98 =E= 0; e79.. x82 - x98 + x99 =E= 0; e80.. x83 - x99 + x100 =E= 0; e81.. -(x1 - 250/x85)*x68 + x101 =E= 0; e82.. -(x2 - 250/x86)*x69 + x102 =E= 0; e83.. -(x3 - 250/x87)*x70 + x103 =E= 0; e84.. -(x4 - 250/x88)*x71 + x104 =E= 0; e85.. -(x5 - 250/x89)*x72 + x105 =E= 0; e86.. -(x6 - 250/x90)*x73 + x106 =E= 0; e87.. -(x7 - 250/x91)*x74 + x107 =E= 0; e88.. -(x8 - 250/x92)*x75 + x108 =E= 0; e89.. -(x9 - 250/x93)*x76 + x109 =E= 0; e90.. -(x10 - 250/x94)*x77 + x110 =E= 0; e91.. -(x11 - 250/x95)*x78 + x111 =E= 0; e92.. -(x12 - 250/x96)*x79 + x112 =E= 0; e93.. -(x13 - 250/x97)*x80 + x113 =E= 0; e94.. -(x14 - 250/x98)*x81 + x114 =E= 0; e95.. -(x15 - 250/x99)*x82 + x115 =E= 0; e96.. -(x16 - 250/x100)*x83 + x116 =E= 0; e97.. - x101 - 0.952380952380952*x102 - 0.90702947845805*x103 - 0.863837598531476*x104 - 0.822702474791882*x105 - 0.783526166468459*x106 - 0.746215396636628*x107 - 0.710681330130121*x108 - 0.676839362028687*x109 - 0.644608916217797*x110 - 0.613913253540759*x111 - 0.584679289086437*x112 - 0.556837418177559*x113 - 0.530321350645295*x114 - 0.505067952995519*x115 - 0.48101709809097*x116 - objvar =E= 0; * set non-default bounds x17.fx = 18; x34.fx = 6.5; x51.fx = 0; x84.fx = 500; * set non-default levels x1.l = 14; x2.l = 14; x3.l = 14; x4.l = 14; x5.l = 14; x6.l = 14; x7.l = 14; x8.l = 14; x9.l = 14; x10.l = 14; x11.l = 14; x12.l = 14; x13.l = 14; x14.l = 14; x15.l = 14; x16.l = 14; x18.l = 18; x19.l = 18; x20.l = 18; x21.l = 18; x22.l = 18; x23.l = 18; x24.l = 18; x25.l = 18; x26.l = 18; x27.l = 18; x28.l = 18; x29.l = 18; x30.l = 18; x31.l = 18; x32.l = 18; x33.l = 18; x35.l = 7; x36.l = 7; x37.l = 7; x38.l = 7; x39.l = 7; x40.l = 7; x41.l = 7; x42.l = 7; x43.l = 7; x44.l = 7; x45.l = 7; x46.l = 7; x47.l = 7; x48.l = 7; x49.l = 7; x50.l = 7; x52.l = 7; x53.l = 14; x54.l = 21; x55.l = 28; x56.l = 35; x57.l = 42; x58.l = 49; x59.l = 56; x60.l = 63; x61.l = 70; x62.l = 77; x63.l = 84; x64.l = 91; x65.l = 98; x66.l = 105; x67.l = 112; x68.l = 11; x69.l = 11; x70.l = 11; x71.l = 11; x72.l = 11; x73.l = 11; x74.l = 11; x75.l = 11; x76.l = 11; x77.l = 11; x78.l = 11; x79.l = 11; x80.l = 11; x81.l = 11; x82.l = 11; x83.l = 11; x85.l = 489; x86.l = 478; x87.l = 467; x88.l = 456; x89.l = 445; x90.l = 434; x91.l = 423; x92.l = 412; x93.l = 401; x94.l = 390; x95.l = 379; x96.l = 368; x97.l = 357; x98.l = 346; x99.l = 335; x100.l = 324; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f