MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pointpack06
Find the maximum radius of 6 non-overlapping circles that all lie in the unix-box.
| Formatsⓘ | ams gms lp mod nl osil pip py | 
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.36111141 (ANTIGONE) 0.36111227 (BARON) 0.36111111 (COUENNE) 0.36111280 (GUROBI) 0.36111128 (LINDO) 0.36111159 (SCIP)  | 
 
| Referencesⓘ | Anstreicher, Kurt, Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming, Journal of Global Optimization, 43:2, 2009, 471-484. | 
 
| Sourceⓘ | ANTIGONE test library model Other_MIQCQP/pnt_pack_06.gms | 
| Applicationⓘ | Geometry | 
| Added to libraryⓘ | 15 Aug 2014 | 
| Problem typeⓘ | QCP | 
| #Variablesⓘ | 13 | 
| #Binary Variablesⓘ | 0 | 
| #Integer Variablesⓘ | 0 | 
| #Nonlinear Variablesⓘ | 12 | 
| #Nonlinear Binary Variablesⓘ | 0 | 
| #Nonlinear Integer Variablesⓘ | 0 | 
| Objective Senseⓘ | max | 
| Objective typeⓘ | linear | 
| Objective curvatureⓘ | linear | 
| #Nonzeros in Objectiveⓘ | 1 | 
| #Nonlinear Nonzeros in Objectiveⓘ | 0 | 
| #Constraintsⓘ | 21 | 
| #Linear Constraintsⓘ | 6 | 
| #Quadratic Constraintsⓘ | 15 | 
| #Polynomial Constraintsⓘ | 0 | 
| #Signomial Constraintsⓘ | 0 | 
| #General Nonlinear Constraintsⓘ | 0 | 
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | concave | 
| #Nonzeros in Jacobianⓘ | 87 | 
| #Nonlinear Nonzeros in Jacobianⓘ | 60 | 
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 72 | 
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 12 | 
| #Blocks in Hessian of Lagrangianⓘ | 2 | 
| Minimal blocksize in Hessian of Lagrangianⓘ | 6 | 
| Maximal blocksize in Hessian of Lagrangianⓘ | 6 | 
| Average blocksize in Hessian of Lagrangianⓘ | 6.0 | 
| #Semicontinuitiesⓘ | 0 | 
| #Nonlinear Semicontinuitiesⓘ | 0 | 
| #SOS type 1ⓘ | 0 | 
| #SOS type 2ⓘ | 0 | 
| Minimal coefficientⓘ | 1.0000e+00 | 
| Maximal coefficientⓘ | 2.0000e+00 | 
| Infeasibility of initial pointⓘ | 0 | 
| Sparsity Jacobianⓘ | ![]()  | 
 
| Sparsity Hessian of Lagrangianⓘ | ![]()  | 
 
$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         21        0        0       21        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         13       13        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         87       27       60        0
*
*  Solve m using NLP maximizing objvar;
Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,objvar;
Positive Variables  x4,x5,x6,x7,x8,x9,x10,x11,x12;
Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21;
e1.. 2*x1*x2 - x1*x1 - x2*x2 - x7*x7 + 2*x7*x8 - x8*x8 + objvar =L= 0;
e2.. 2*x1*x3 - x1*x1 - x3*x3 - x7*x7 + 2*x7*x9 - x9*x9 + objvar =L= 0;
e3.. 2*x1*x4 - x1*x1 - x4*x4 - x7*x7 + 2*x7*x10 - x10*x10 + objvar =L= 0;
e4.. 2*x1*x5 - x1*x1 - x5*x5 - x7*x7 + 2*x7*x11 - x11*x11 + objvar =L= 0;
e5.. 2*x1*x6 - x1*x1 - x6*x6 - x7*x7 + 2*x7*x12 - x12*x12 + objvar =L= 0;
e6.. 2*x2*x3 - x2*x2 - x3*x3 - x8*x8 + 2*x8*x9 - x9*x9 + objvar =L= 0;
e7.. 2*x2*x4 - x2*x2 - x4*x4 - x8*x8 + 2*x8*x10 - x10*x10 + objvar =L= 0;
e8.. 2*x2*x5 - x2*x2 - x5*x5 - x8*x8 + 2*x8*x11 - x11*x11 + objvar =L= 0;
e9.. 2*x2*x6 - x2*x2 - x6*x6 - x8*x8 + 2*x8*x12 - x12*x12 + objvar =L= 0;
e10.. 2*x3*x4 - x3*x3 - x4*x4 - x9*x9 + 2*x9*x10 - x10*x10 + objvar =L= 0;
e11.. 2*x3*x5 - x3*x3 - x5*x5 - x9*x9 + 2*x9*x11 - x11*x11 + objvar =L= 0;
e12.. 2*x3*x6 - x3*x3 - x6*x6 - x9*x9 + 2*x9*x12 - x12*x12 + objvar =L= 0;
e13.. 2*x4*x5 - x4*x4 - x5*x5 - x10*x10 + 2*x10*x11 - x11*x11 + objvar =L= 0;
e14.. 2*x4*x6 - x4*x4 - x6*x6 - x10*x10 + 2*x10*x12 - x12*x12 + objvar =L= 0;
e15.. 2*x5*x6 - x5*x5 - x6*x6 - x11*x11 + 2*x11*x12 - x12*x12 + objvar =L= 0;
e16..  - x7 + x8 =L= 0;
e17..  - x1 + x2 =L= 0;
e18..  - x2 + x3 =L= 0;
e19..  - x3 + x4 =L= 0;
e20..  - x4 + x5 =L= 0;
e21..  - x5 + x6 =L= 0;
* set non-default bounds
x1.lo = 0.5; x1.up = 1;
x2.lo = 0.5; x2.up = 1;
x3.lo = 0.5; x3.up = 1;
x4.up = 1;
x5.up = 1;
x6.up = 1;
x7.up = 1;
x8.up = 1;
x9.up = 1;
x10.up = 1;
x11.up = 1;
x12.up = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

