MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Removed Instance pollut

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-5353268.62900000 p1 ( gdx sol )
(infeas: 2e-10)
Other points (infeas > 1e-08)  
Dual Bounds
-5353268.70700000 (ANTIGONE)
-5353268.63400000 (BARON)
-5353268.62900000 (COUENNE)
-5353268.62900000 (LINDO)
-5353268.62900000 (SCIP)
References Mangasarian, Olvi L, Nonlinear Programming, McGraw Hill, New York, 1973.
Source GAMS Model Library model pollut
Application Production
Added to library 31 Jul 2001
Removed from library 16 Feb 2022
Removed because Instance is continuous and convex.
Problem type NLP
#Variables 42
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 40
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type signomial
Objective curvature convex
#Nonzeros in Objective 40
#Nonlinear Nonzeros in Objective 40
#Constraints 8
#Linear Constraints 8
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 126
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 80
#Nonzeros in Diagonal of Hessian of Lagrangian 40
#Blocks in Hessian of Lagrangian 20
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 4.9313e-03
Maximal coefficient 1.1146e+01
Infeasibility of initial point 6.631e+05
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          9        3        1        5        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         43       43        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        167      127       40        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,objvar;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9;


e1.. -(9.6*x1**0.879*x21**0.121 + 6.353*x2**0.806*x22**0.194 + 9.818*x3**0.796*
     x23**0.204 + 7.371*x4**0.819*x24**0.181 + 10.22*x5**0.829*x25**0.171 + 
     6.255*x6**0.855*x26**0.145 + 8.149*x7**0.696*x27**0.304 + 7.794*x8**0.854*
     x28**0.146 + 8.4*x9**0.827*x29**0.173 + 9.933*x10**0.826*x30**0.174 + 
     11.069*x11**0.833*x31**0.167 + 6.528*x12**0.808*x32**0.192 + 7.928*x13**
     0.884*x33**0.116 + 10.559*x14**0.909*x34**0.091 + 6.606*x15**0.773*x35**
     0.227 + 7.153*x16**0.792*x36**0.208 + 11.146*x17**0.849*x37**0.151 + 6.884
     *x18**0.801*x38**0.199 + 6.66*x19**0.747*x39**0.253 + 7.929*x20**0.818*x40
     **0.182) - objvar =E= 0;

e2..    0.797744360902256*x1 + 0.208131595282433*x2 + 0.395400943396226*x3
      + 0.00945378151260504*x4 + 0.016020942408377*x5 + 1.32848209209778*x6
      + 0.347442922374429*x7 + 0.534329395413482*x8 + 0.284322678843227*x9
      + 0.283080040526849*x10 + 0.341982864137087*x11 + 0.0127927927927928*x12
      + 0.0437154696132597*x13 + 0.00886939571150097*x14
      + 0.00797702616464582*x15 + 0.00590969455511288*x16
      + 0.0137430167597765*x17 + 0.00493133583021223*x18
      + 0.0273858921161826*x19 + 0.0741242038216561*x20 =L= 153000;

e3..    0.0854323308270677*x1 + 0.153320918684047*x2 + 0.29127358490566*x3
      + 0.00588235294117647*x4 + 0.00879581151832461*x5 + 0.424161455372371*x6
      + 0.263333333333333*x7 + 0.400764419735928*x8 + 0.126560121765601*x9
      + 0.0462006079027356*x10 + 0.0558139534883721*x11 + 0.528528528528528*x12
      + 0.163052486187845*x13 + 0.329044834307992*x14 + 0.0548819400127632*x15
      + 0.0249667994687915*x16 + 0.0412290502793296*x17
      + 0.00792759051186017*x18 + 0.0174273858921162*x19
      + 0.0200636942675159*x20 =L= 120000;

e4..    0.281015037593985*x1 + 0.557417752948479*x2 + 0.327830188679245*x3
      + 0.48249299719888*x4 + 0.366492146596859*x5 + 0.266628766344514*x6
      + 0.0589041095890411*x7 + 0.373175816539263*x8 + 2.06088280060883*x9
      + 0.611955420466059*x10 + 0.609547123623011*x11 + 0.691291291291291*x12
      + 0.614640883977901*x13 + 0.260233918128655*x14 + 0.433312061263561*x15
      + 0.412350597609562*x16 + 0.329608938547486*x17 + 0.491260923845194*x18
      + 0.264868603042877*x19 + 0.337579617834395*x20 =L= 250000;

e5..    0.676221804511278*x1 + 1.05723153320919*x2 + 0.158608490566038*x3
      + 0.112464985994398*x4 + 0.149633507853403*x5 + 0.883001705514497*x6
      + 0.0844748858447489*x7 + 0.6726893676164*x8 + 0.220700152207002*x9
      + 0.932117527862209*x10 + 0.895960832313342*x11 + 0.571771771771772*x12
      + 0.537292817679558*x13 + 0.362573099415205*x14 + 0.314613911933631*x15
      + 0.164674634794157*x16 + 0.256983240223464*x17 + 0.268414481897628*x18
      + 0.208160442600277*x19 + 0.278662420382166*x20 =L= 250000;

e6..    x41 - 0.9*x42 =G= 0;

e7..    x41 - 1.4*x42 =L= 0;

e8..  - x1 - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 - x11 - x12 - x13
      - x14 - x15 - x16 - x17 - x18 - x19 - x20 + x41 =E= 0;

e9..  - x21 - x22 - x23 - x24 - x25 - x26 - x27 - x28 - x29 - x30 - x31 - x32
      - x33 - x34 - x35 - x36 - x37 - x38 - x39 - x40 + x42 =E= 0;

* set non-default bounds
x1.lo = 17643.6; x1.up = 41168.4;
x2.lo = 12825; x2.up = 29925;
x3.lo = 5053.8; x3.up = 11792.2;
x4.lo = 8323.8; x4.up = 19422.2;
x5.lo = 5082; x5.up = 11858;
x6.lo = 21825; x6.up = 50925;
x7.lo = 39609.6; x7.up = 92422.4;
x8.lo = 48080.4; x8.up = 112187.6;
x9.lo = 796.2; x9.up = 1857.8;
x10.lo = 2648.4; x10.up = 6179.6;
x11.lo = 2225.4; x11.up = 5192.6;
x12.lo = 8697.6; x12.up = 20294.4;
x13.lo = 61439.4; x13.up = 143358.6;
x14.lo = 16804.8; x14.up = 39211.2;
x15.lo = 41588.4; x15.up = 97039.6;
x16.lo = 54008.4; x16.up = 126019.6;
x17.lo = 17616; x17.up = 41104;
x18.lo = 16612.2; x18.up = 38761.8;
x19.lo = 2405.4; x19.up = 5612.6;
x20.lo = 14593.8; x20.up = 34052.2;
x21.lo = 14825.4; x21.up = 34592.6;
x22.lo = 11350.8; x22.up = 26485.2;
x23.lo = 12381.6; x23.up = 28890.4;
x24.lo = 6274.2; x24.up = 14639.8;
x25.lo = 5843.4; x25.up = 13634.6;
x26.lo = 11328; x26.up = 26432;
x27.lo = 26688; x27.up = 62272;
x28.lo = 21915.6; x28.up = 51136.4;
x29.lo = 454.8; x29.up = 1061.2;
x30.lo = 2952.6; x30.up = 6889.4;
x31.lo = 4059.6; x31.up = 9472.4;
x32.lo = 5620.8; x32.up = 13115.2;
x33.lo = 18676.2; x33.up = 43577.8;
x34.lo = 699.6; x34.up = 1632.4;
x35.lo = 35715; x35.up = 83335;
x36.lo = 37828.8; x36.up = 88267.2;
x37.lo = 17903.4; x37.up = 41774.6;
x38.lo = 10167; x38.up = 23723;
x39.lo = 2896.8; x39.up = 6759.2;
x40.lo = 14741.4; x40.up = 34396.6;

* set non-default levels
x1.l = 29406;
x2.l = 21375;
x3.l = 8423;
x4.l = 13873;
x5.l = 8470;
x6.l = 36375;
x7.l = 66016;
x8.l = 80134;
x9.l = 1327;
x10.l = 4414;
x11.l = 3709;
x12.l = 14496;
x13.l = 102399;
x14.l = 28008;
x15.l = 69314;
x16.l = 90014;
x17.l = 29360;
x18.l = 27687;
x19.l = 4009;
x20.l = 24323;
x21.l = 24709;
x22.l = 18918;
x23.l = 20636;
x24.l = 10457;
x25.l = 9739;
x26.l = 18880;
x27.l = 44480;
x28.l = 36526;
x29.l = 758;
x30.l = 4921;
x31.l = 6766;
x32.l = 9368;
x33.l = 31127;
x34.l = 1166;
x35.l = 59525;
x36.l = 63048;
x37.l = 29839;
x38.l = 16945;
x39.l = 4828;
x40.l = 24569;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2022-08-11 Git hash: f176bd52
Imprint / Privacy Policy / License: CC-BY 4.0