MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pooling_adhya2tp
TP formulation of pooling problem. Explicitly added RLT constraints were removed from the original formulation of Alfaki and Haugland.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -549.80306110 (ANTIGONE) -549.80306510 (BARON) -549.80308100 (GUROBI) -549.80305660 (LINDO) -549.80306720 (SCIP) |
Referencesⓘ | Adhya, Nilanjan, Tawarmalani, Mohit, and Sahinidis, Nikolaos V., A Lagrangian Approach to the Pooling Problem, Industrial & Engineering Chemistry Research, 38:5, 1999, 1956-1972. Alfaki, Mohammed and Haugland, Dag, Strong formulations for the pooling problem, Journal of Global Optimization, 56:3, 2013, 897-916. |
Sourceⓘ | Adhya2.gms from Standard Pooling Problem Instances |
Applicationⓘ | Pooling problem |
Added to libraryⓘ | 12 Sep 2017 |
Problem typeⓘ | QCP |
#Variablesⓘ | 33 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 13 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 19 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 57 |
#Linear Constraintsⓘ | 37 |
#Quadratic Constraintsⓘ | 20 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 238 |
#Nonlinear Nonzeros in Jacobianⓘ | 40 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 40 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 6.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 2.3000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 58 23 0 35 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 34 34 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 258 218 40 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58; e1.. objvar + 9*x10 + 18*x11 + 8*x12 + 3*x13 + 13*x14 + 22*x15 + 12*x16 + 7*x17 + 14*x18 + 23*x19 + 13*x20 + 8*x21 + 6*x22 + 15*x23 + 5*x24 + 11*x26 + 20*x27 + 10*x28 + 5*x29 =E= 0; e2.. x10 + x11 + x12 + x13 =L= 75; e3.. x14 + x15 + x16 + x17 =L= 75; e4.. x18 + x19 + x20 + x21 =L= 75; e5.. x22 + x23 + x24 + x25 =L= 75; e6.. x26 + x27 + x28 + x29 =L= 75; e7.. x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 =L= 75; e8.. x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 =L= 75; e9.. x10 + x14 + x18 + x22 + x26 =L= 10; e10.. x11 + x15 + x19 + x23 + x27 =L= 25; e11.. x12 + x16 + x20 + x24 + x28 =L= 30; e12.. x13 + x17 + x21 + x25 + x29 =L= 10; e13.. - 2*x10 + x14 + x18 - 2*x26 =L= 0; e14.. 3*x10 - 2*x14 + 2.5*x18 - 0.3*x26 =L= 0; e15.. 0.75*x10 - 0.25*x14 - 0.25*x18 - 0.25*x22 + 0.75*x26 =L= 0; e16.. - 0.25*x10 + 1.25*x14 + 0.15*x18 + 0.25*x22 + 0.85*x26 =L= 0; e17.. - x10 - 2*x14 + x18 - 3*x22 - 3*x26 =L= 0; e18.. 4*x10 - x14 + 5*x18 - x22 + 2*x26 =L= 0; e19.. - 3*x11 - x23 - 3*x27 =L= 0; e20.. 3.5*x11 - 1.5*x15 + 3*x19 + 0.5*x23 + 0.2*x27 =L= 0; e21.. 0.5*x11 - 0.5*x15 - 0.5*x19 - 0.5*x23 + 0.5*x27 =L= 0; e22.. - x11 + 0.5*x15 - 0.6*x19 - 0.5*x23 + 0.1*x27 =L= 0; e23.. - 2*x11 - 3*x15 - 4*x23 - 4*x27 =L= 0; e24.. 3*x11 - 2*x15 + 4*x19 - 2*x23 + x27 =L= 0; e25.. - 0.5*x12 + 2.5*x16 + 2.5*x20 + 1.5*x24 - 0.5*x28 =L= 0; e26.. 0.5*x12 - 4.5*x16 - 2.5*x24 - 2.8*x28 =L= 0; e27.. 0.1*x12 - 0.9*x16 - 0.9*x20 - 0.9*x24 + 0.1*x28 =L= 0; e28.. - 0.3*x12 + 1.2*x16 + 0.1*x20 + 0.2*x24 + 0.8*x28 =L= 0; e29.. - 2*x12 - 3*x16 - 4*x24 - 4*x28 =L= 0; e30.. 3*x12 - 2*x16 + 4*x20 - 2*x24 + x28 =L= 0; e31.. - 2*x13 + x17 + x21 - 2*x29 =L= 0; e32.. 2*x13 - 3*x17 + 1.5*x21 - x25 - 1.3*x29 =L= 0; e33.. - x17 - x21 - x25 =L= 0; e34.. - 1.3*x13 + 0.2*x17 - 0.9*x21 - 0.8*x25 - 0.2*x29 =L= 0; e35.. - 3*x13 - 4*x17 - x21 - 5*x25 - 5*x29 =L= 0; e36.. 3*x13 - 2*x17 + 4*x21 - 2*x25 + x29 =L= 0; e37.. x2 + x3 + x4 + x5 =E= 1; e38.. x6 + x7 + x8 + x9 =E= 1; e39.. -x2*x30 + x10 =E= 0; e40.. -x3*x30 + x11 =E= 0; e41.. -x4*x30 + x12 =E= 0; e42.. -x5*x30 + x13 =E= 0; e43.. -x2*x31 + x14 =E= 0; e44.. -x3*x31 + x15 =E= 0; e45.. -x4*x31 + x16 =E= 0; e46.. -x5*x31 + x17 =E= 0; e47.. -x6*x32 + x18 =E= 0; e48.. -x7*x32 + x19 =E= 0; e49.. -x8*x32 + x20 =E= 0; e50.. -x9*x32 + x21 =E= 0; e51.. -x6*x33 + x22 =E= 0; e52.. -x7*x33 + x23 =E= 0; e53.. -x8*x33 + x24 =E= 0; e54.. -x9*x33 + x25 =E= 0; e55.. -x6*x34 + x26 =E= 0; e56.. -x7*x34 + x27 =E= 0; e57.. -x8*x34 + x28 =E= 0; e58.. -x9*x34 + x29 =E= 0; * set non-default bounds x2.up = 1; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.up = 1; x10.up = 10; x11.up = 25; x12.up = 30; x13.up = 10; x14.up = 10; x15.up = 25; x16.up = 30; x17.up = 10; x18.up = 10; x19.up = 25; x20.up = 30; x21.up = 10; x22.up = 10; x23.up = 25; x24.up = 30; x25.up = 10; x26.up = 10; x27.up = 25; x28.up = 30; x29.up = 10; x30.up = 75; x31.up = 75; x32.up = 75; x33.up = 75; x34.up = 75; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f