MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pooling_adhya3tp
TP formulation of pooling problem. Explicitly added RLT constraints were removed from the original formulation of Alfaki and Haugland.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -561.04468810 (ANTIGONE) -561.04468920 (BARON) -561.04469340 (COUENNE) -561.04468920 (GUROBI) -561.04468760 (LINDO) -561.04469440 (SCIP) |
Referencesⓘ | Adhya, Nilanjan, Tawarmalani, Mohit, and Sahinidis, Nikolaos V., A Lagrangian Approach to the Pooling Problem, Industrial & Engineering Chemistry Research, 38:5, 1999, 1956-1972. Alfaki, Mohammed and Haugland, Dag, Strong formulations for the pooling problem, Journal of Global Optimization, 56:3, 2013, 897-916. |
Sourceⓘ | Adhya3.gms from Standard Pooling Problem Instances |
Applicationⓘ | Pooling problem |
Added to libraryⓘ | 12 Sep 2017 |
Problem typeⓘ | QCP |
#Variablesⓘ | 52 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 31 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 74 |
#Linear Constraintsⓘ | 42 |
#Quadratic Constraintsⓘ | 32 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 382 |
#Nonlinear Nonzeros in Jacobianⓘ | 64 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 64 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 6.666667 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 2.3000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 75 36 0 39 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 53 53 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 414 350 64 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75; e1.. objvar + 9*x14 + 18*x15 + 8*x16 + 3*x17 + 13*x18 + 22*x19 + 12*x20 + 7*x21 + 14*x22 + 23*x23 + 13*x24 + 8*x25 + 6*x26 + 15*x27 + 5*x28 + 11*x30 + 20*x31 + 10*x32 + 5*x33 + 11*x34 + 20*x35 + 10*x36 + 5*x37 + 7*x38 + 16*x39 + 6*x40 + x41 + 5*x42 + 14*x43 + 4*x44 - x45 =E= 0; e2.. x14 + x15 + x16 + x17 =L= 75; e3.. x18 + x19 + x20 + x21 =L= 75; e4.. x22 + x23 + x24 + x25 =L= 75; e5.. x26 + x27 + x28 + x29 =L= 75; e6.. x30 + x31 + x32 + x33 =L= 75; e7.. x34 + x35 + x36 + x37 =L= 75; e8.. x38 + x39 + x40 + x41 =L= 75; e9.. x42 + x43 + x44 + x45 =L= 75; e10.. x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 =L= 75; e11.. x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 + x33 =L= 75; e12.. x34 + x35 + x36 + x37 + x38 + x39 + x40 + x41 + x42 + x43 + x44 + x45 =L= 75; e13.. x14 + x18 + x22 + x26 + x30 + x34 + x38 + x42 =L= 10; e14.. x15 + x19 + x23 + x27 + x31 + x35 + x39 + x43 =L= 25; e15.. x16 + x20 + x24 + x28 + x32 + x36 + x40 + x44 =L= 30; e16.. x17 + x21 + x25 + x29 + x33 + x37 + x41 + x45 =L= 10; e17.. - 2*x14 + x18 + x22 - 2*x30 - 1.2*x34 + 2*x38 =L= 0; e18.. 3*x14 - 2*x18 + 2.5*x22 - 0.3*x30 - 0.3*x34 - 2*x38 =L= 0; e19.. 0.75*x14 - 0.25*x18 - 0.25*x22 - 0.25*x26 + 0.75*x30 + 0.75*x34 - 1.55*x38 - 0.25*x42 =L= 0; e20.. - 0.25*x14 + 1.25*x18 + 0.15*x22 + 0.25*x26 + 0.85*x30 + 2.75*x34 + 2.15*x38 + 0.25*x42 =L= 0; e21.. - x14 - 2*x18 + x22 - 3*x26 - 3*x30 + 0.0999999999999996*x34 - 2.5*x38 - x42 =L= 0; e22.. 4*x14 - x18 + 5*x22 - x26 + 2*x30 - 2*x34 - 2.1*x38 - 3*x42 =L= 0; e23.. - 3*x15 - x27 - 3*x31 - 2.2*x35 + x39 - x43 =L= 0; e24.. 3.5*x15 - 1.5*x19 + 3*x23 + 0.5*x27 + 0.2*x31 + 0.2*x35 - 1.5*x39 + 0.5*x43 =L= 0; e25.. 0.5*x15 - 0.5*x19 - 0.5*x23 - 0.5*x27 + 0.5*x31 + 0.5*x35 - 1.8*x39 - 0.5*x43 =L= 0; e26.. - x15 + 0.5*x19 - 0.6*x23 - 0.5*x27 + 0.1*x31 + 2*x35 + 1.4*x39 - 0.5*x43 =L= 0; e27.. - 2*x15 - 3*x19 - 4*x27 - 4*x31 - 0.9*x35 - 3.5*x39 - 2*x43 =L= 0; e28.. 3*x15 - 2*x19 + 4*x23 - 2*x27 + x31 - 3*x35 - 3.1*x39 - 4*x43 =L= 0; e29.. - 0.5*x16 + 2.5*x20 + 2.5*x24 + 1.5*x28 - 0.5*x32 + 0.3*x36 + 3.5*x40 + 1.5*x44 =L= 0; e30.. 0.5*x16 - 4.5*x20 - 2.5*x28 - 2.8*x32 - 2.8*x36 - 4.5*x40 - 2.5*x44 =L= 0; e31.. 0.1*x16 - 0.9*x20 - 0.9*x24 - 0.9*x28 + 0.1*x32 + 0.1*x36 - 2.2*x40 - 0.9*x44 =L= 0; e32.. - 0.3*x16 + 1.2*x20 + 0.1*x24 + 0.2*x28 + 0.8*x32 + 2.7*x36 + 2.1*x40 + 0.2*x44 =L= 0; e33.. - 2*x16 - 3*x20 - 4*x28 - 4*x32 - 0.9*x36 - 3.5*x40 - 2*x44 =L= 0; e34.. 3*x16 - 2*x20 + 4*x24 - 2*x28 + x32 - 3*x36 - 3.1*x40 - 4*x44 =L= 0; e35.. - 2*x17 + x21 + x25 - 2*x33 - 1.2*x37 + 2*x41 =L= 0; e36.. 2*x17 - 3*x21 + 1.5*x25 - x29 - 1.3*x33 - 1.3*x37 - 3*x41 - x45 =L= 0; e37.. - x21 - x25 - x29 - 2.3*x41 - x45 =L= 0; e38.. - 1.3*x17 + 0.2*x21 - 0.9*x25 - 0.8*x29 - 0.2*x33 + 1.7*x37 + 1.1*x41 - 0.8*x45 =L= 0; e39.. - x17 - 2*x21 + x25 - 3*x29 - 3*x33 + 0.0999999999999996*x37 - 2.5*x41 - x45 =L= 0; e40.. 3*x17 - 2*x21 + 4*x25 - 2*x29 + x33 - 3*x37 - 3.1*x41 - 4*x45 =L= 0; e41.. x2 + x3 + x4 + x5 =E= 1; e42.. x6 + x7 + x8 + x9 =E= 1; e43.. x10 + x11 + x12 + x13 =E= 1; e44.. -x2*x46 + x14 =E= 0; e45.. -x3*x46 + x15 =E= 0; e46.. -x4*x46 + x16 =E= 0; e47.. -x5*x46 + x17 =E= 0; e48.. -x2*x47 + x18 =E= 0; e49.. -x3*x47 + x19 =E= 0; e50.. -x4*x47 + x20 =E= 0; e51.. -x5*x47 + x21 =E= 0; e52.. -x6*x48 + x22 =E= 0; e53.. -x7*x48 + x23 =E= 0; e54.. -x8*x48 + x24 =E= 0; e55.. -x9*x48 + x25 =E= 0; e56.. -x6*x49 + x26 =E= 0; e57.. -x7*x49 + x27 =E= 0; e58.. -x8*x49 + x28 =E= 0; e59.. -x9*x49 + x29 =E= 0; e60.. -x6*x50 + x30 =E= 0; e61.. -x7*x50 + x31 =E= 0; e62.. -x8*x50 + x32 =E= 0; e63.. -x9*x50 + x33 =E= 0; e64.. -x10*x51 + x34 =E= 0; e65.. -x11*x51 + x35 =E= 0; e66.. -x12*x51 + x36 =E= 0; e67.. -x13*x51 + x37 =E= 0; e68.. -x10*x52 + x38 =E= 0; e69.. -x11*x52 + x39 =E= 0; e70.. -x12*x52 + x40 =E= 0; e71.. -x13*x52 + x41 =E= 0; e72.. -x10*x53 + x42 =E= 0; e73.. -x11*x53 + x43 =E= 0; e74.. -x12*x53 + x44 =E= 0; e75.. -x13*x53 + x45 =E= 0; * set non-default bounds x2.up = 1; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.up = 1; x10.up = 1; x11.up = 1; x12.up = 1; x13.up = 1; x14.up = 10; x15.up = 25; x16.up = 30; x17.up = 10; x18.up = 10; x19.up = 25; x20.up = 30; x21.up = 10; x22.up = 10; x23.up = 25; x24.up = 30; x25.up = 10; x26.up = 10; x27.up = 25; x28.up = 30; x29.up = 10; x30.up = 10; x31.up = 25; x32.up = 30; x33.up = 10; x34.up = 10; x35.up = 25; x36.up = 30; x37.up = 10; x38.up = 10; x39.up = 25; x40.up = 30; x41.up = 10; x42.up = 10; x43.up = 25; x44.up = 30; x45.up = 10; x46.up = 75; x47.up = 75; x48.up = 75; x49.up = 75; x50.up = 75; x51.up = 75; x52.up = 75; x53.up = 75; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f