MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance prob09
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) -0.00000000 (COUENNE) -0.00000000 (LINDO) -0.00000000 (SCIP) |
Referencesⓘ | Westerlund, Tapio and Lundqvist, Kurt, Alpha-ECP, Version 5.01 An Interactive MINLP-Solver Based on the Extended Cutting Plane Method, Tech. Rep. 01-178-A, Process Design Laboratory at Abo University, 2001. |
Sourceⓘ | Example models from AlphaECP |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 3 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 3 |
#Nonlinear Nonzeros in Jacobianⓘ | 2 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+02 |
Infeasibility of initial pointⓘ | 7.996e-19 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 3 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 3 1 2 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3; Equations e1; e1.. 100*sqr(x3 - sqr(x2)) + sqr(1 - x2) - objvar =E= 0; * set non-default bounds objvar.lo = -100; objvar.up = 100; x2.lo = -2; x2.up = 2; x3.lo = -2; x3.up = 2; * set non-default levels objvar.l = 2.28067255148468E-6; x2.l = 0.999139149741104; x3.l = 0.998154959548312; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f