MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance prob09
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -0.00000000 (ANTIGONE) -0.00000000 (BARON) -0.00000000 (COUENNE) -0.00000000 (LINDO) -0.00000000 (SCIP) |
| Referencesⓘ | Westerlund, Tapio and Lundqvist, Kurt, Alpha-ECP, Version 5.01 An Interactive MINLP-Solver Based on the Extended Cutting Plane Method, Tech. Rep. 01-178-A, Process Design Laboratory at Abo University, 2001. |
| Sourceⓘ | Example models from AlphaECP |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 3 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 2 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 1 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 3 |
| #Nonlinear Nonzeros in Jacobianⓘ | 2 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
| Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 1.0000e+02 |
| Infeasibility of initial pointⓘ | 7.996e-19 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 3 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 3 1 2 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3; Equations e1; e1.. 100*sqr(x3 - sqr(x2)) + sqr(1 - x2) - objvar =E= 0; * set non-default bounds objvar.lo = -100; objvar.up = 100; x2.lo = -2; x2.up = 2; x3.lo = -2; x3.up = 2; * set non-default levels objvar.l = 2.28067255148468E-6; x2.l = 0.999139149741104; x3.l = 0.998154959548312; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

