MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance procsyn
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 2068.20055500 (ANTIGONE) 2068.20055300 (BARON) 2066.13362400 (COUENNE) 2068.20055500 (LINDO) 2068.20046000 (SCIP) |
| Referencesⓘ | Novak Pintaric, Zorka and Kravanja, Zdravko, A Novel Bi-Level Optimization Method for the Identification of Critical Points in Flow Sheet Synthesis under Uncertainty, 2012. |
| Sourceⓘ | Model_E2.gms from minlp.org model 143 |
| Applicationⓘ | Process Flowsheets |
| Added to libraryⓘ | 18 Aug 2014 |
| Removed from libraryⓘ | 16 Feb 2022 |
| Removed becauseⓘ | Instance is continuous and convex. |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 20 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 20 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | polynomial |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 20 |
| #Nonlinear Nonzeros in Objectiveⓘ | 2 |
| #Constraintsⓘ | 27 |
| #Linear Constraintsⓘ | 9 |
| #Quadratic Constraintsⓘ | 9 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 9 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 72 |
| #Nonlinear Nonzeros in Jacobianⓘ | 27 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
| #Blocks in Hessian of Lagrangianⓘ | 20 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.5000e-02 |
| Maximal coefficientⓘ | 3.0000e+00 |
| Infeasibility of initial pointⓘ | 22.5 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 28 1 18 9 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 21 21 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 93 64 29 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28;
e1.. -(0.05*(sqr(x1) + x2**3) + 0.175*(sqr(x1) + x2**3) + 0.025*(sqr(x1) + x2**
3) + 0.1*(sqr(x1) + x2**3) + 0.35*(sqr(x1) + x2**3) + 0.05*(sqr(x1) + x2**
3) + 0.05*(sqr(x1) + x2**3) + 0.175*(sqr(x1) + x2**3) + 0.025*(sqr(x1) +
x2**3)) - 0.15*x3 - 0.525*x4 - 0.075*x5 - 0.3*x6 - 1.05*x7 - 0.15*x8
- 0.15*x9 - 0.525*x10 - 0.075*x11 - 0.1*x12 - 0.35*x13 - 0.05*x14
- 0.2*x15 - 0.7*x16 - 0.1*x17 - 0.1*x18 - 0.35*x19 - 0.05*x20 + objvar
=E= -3.2;
e2.. x1 - 2*x3 - 2*x12 =G= -1;
e3.. x1 - 2*x4 - 2*x13 =G= -1;
e4.. x1 - 2*x5 - 2*x14 =G= -1;
e5.. x1 - 2*x6 - 2*x15 =G= -3;
e6.. x1 - 2*x7 - 2*x16 =G= -3;
e7.. x1 - 2*x8 - 2*x17 =G= -3;
e8.. x1 - 2*x9 - 2*x18 =G= -5;
e9.. x1 - 2*x10 - 2*x19 =G= -5;
e10.. x1 - 2*x11 - 2*x20 =G= -5;
e11.. -(1/x3 + sqr(x12)) + x2 =G= 2.5;
e12.. -(1/x4 + sqr(x13)) + x2 =G= 6.5;
e13.. -(1/x5 + sqr(x14)) + x2 =G= 10.5;
e14.. -(1/x6 + sqr(x15)) + x2 =G= 3.5;
e15.. -(1/x7 + sqr(x16)) + x2 =G= 7.5;
e16.. -(1/x8 + sqr(x17)) + x2 =G= 11.5;
e17.. -(1/x9 + sqr(x18)) + x2 =G= 4.5;
e18.. -(1/x10 + sqr(x19)) + x2 =G= 8.5;
e19.. -(1/x11 + sqr(x20)) + x2 =G= 12.5;
e20.. sqr(x3) + 2*x12 =L= 30;
e21.. sqr(x4) + 2*x13 =L= 30;
e22.. sqr(x5) + 2*x14 =L= 30;
e23.. sqr(x6) + 2*x15 =L= 30;
e24.. sqr(x7) + 2*x16 =L= 30;
e25.. sqr(x8) + 2*x17 =L= 30;
e26.. sqr(x9) + 2*x18 =L= 30;
e27.. sqr(x10) + 2*x19 =L= 30;
e28.. sqr(x11) + 2*x20 =L= 30;
* set non-default bounds
x3.up = 10;
x4.up = 10;
x5.up = 10;
x6.up = 10;
x7.up = 10;
x8.up = 10;
x9.up = 10;
x10.up = 10;
x11.up = 10;
* set non-default levels
x3.l = 0.1;
x4.l = 0.1;
x5.l = 0.1;
x6.l = 0.1;
x7.l = 0.1;
x8.l = 0.1;
x9.l = 0.1;
x10.l = 0.1;
x11.l = 0.1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

