MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance procsyn
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2068.20055500 (ANTIGONE) 2068.20055300 (BARON) 2066.13362400 (COUENNE) 2068.20055500 (LINDO) 2068.20046000 (SCIP) |
Referencesⓘ | Novak Pintaric, Zorka and Kravanja, Zdravko, A Novel Bi-Level Optimization Method for the Identification of Critical Points in Flow Sheet Synthesis under Uncertainty, 2012. |
Sourceⓘ | Model_E2.gms from minlp.org model 143 |
Applicationⓘ | Process Flowsheets |
Added to libraryⓘ | 18 Aug 2014 |
Removed from libraryⓘ | 16 Feb 2022 |
Removed becauseⓘ | Instance is continuous and convex. |
Problem typeⓘ | NLP |
#Variablesⓘ | 20 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | polynomial |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 27 |
#Linear Constraintsⓘ | 9 |
#Quadratic Constraintsⓘ | 9 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 9 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 72 |
#Nonlinear Nonzeros in Jacobianⓘ | 27 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
#Blocks in Hessian of Lagrangianⓘ | 20 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.5000e-02 |
Maximal coefficientⓘ | 3.0000e+00 |
Infeasibility of initial pointⓘ | 22.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 28 1 18 9 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 21 21 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 93 64 29 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28; e1.. -(0.05*(sqr(x1) + x2**3) + 0.175*(sqr(x1) + x2**3) + 0.025*(sqr(x1) + x2** 3) + 0.1*(sqr(x1) + x2**3) + 0.35*(sqr(x1) + x2**3) + 0.05*(sqr(x1) + x2** 3) + 0.05*(sqr(x1) + x2**3) + 0.175*(sqr(x1) + x2**3) + 0.025*(sqr(x1) + x2**3)) - 0.15*x3 - 0.525*x4 - 0.075*x5 - 0.3*x6 - 1.05*x7 - 0.15*x8 - 0.15*x9 - 0.525*x10 - 0.075*x11 - 0.1*x12 - 0.35*x13 - 0.05*x14 - 0.2*x15 - 0.7*x16 - 0.1*x17 - 0.1*x18 - 0.35*x19 - 0.05*x20 + objvar =E= -3.2; e2.. x1 - 2*x3 - 2*x12 =G= -1; e3.. x1 - 2*x4 - 2*x13 =G= -1; e4.. x1 - 2*x5 - 2*x14 =G= -1; e5.. x1 - 2*x6 - 2*x15 =G= -3; e6.. x1 - 2*x7 - 2*x16 =G= -3; e7.. x1 - 2*x8 - 2*x17 =G= -3; e8.. x1 - 2*x9 - 2*x18 =G= -5; e9.. x1 - 2*x10 - 2*x19 =G= -5; e10.. x1 - 2*x11 - 2*x20 =G= -5; e11.. -(1/x3 + sqr(x12)) + x2 =G= 2.5; e12.. -(1/x4 + sqr(x13)) + x2 =G= 6.5; e13.. -(1/x5 + sqr(x14)) + x2 =G= 10.5; e14.. -(1/x6 + sqr(x15)) + x2 =G= 3.5; e15.. -(1/x7 + sqr(x16)) + x2 =G= 7.5; e16.. -(1/x8 + sqr(x17)) + x2 =G= 11.5; e17.. -(1/x9 + sqr(x18)) + x2 =G= 4.5; e18.. -(1/x10 + sqr(x19)) + x2 =G= 8.5; e19.. -(1/x11 + sqr(x20)) + x2 =G= 12.5; e20.. sqr(x3) + 2*x12 =L= 30; e21.. sqr(x4) + 2*x13 =L= 30; e22.. sqr(x5) + 2*x14 =L= 30; e23.. sqr(x6) + 2*x15 =L= 30; e24.. sqr(x7) + 2*x16 =L= 30; e25.. sqr(x8) + 2*x17 =L= 30; e26.. sqr(x9) + 2*x18 =L= 30; e27.. sqr(x10) + 2*x19 =L= 30; e28.. sqr(x11) + 2*x20 =L= 30; * set non-default bounds x3.up = 10; x4.up = 10; x5.up = 10; x6.up = 10; x7.up = 10; x8.up = 10; x9.up = 10; x10.up = 10; x11.up = 10; * set non-default levels x3.l = 0.1; x4.l = 0.1; x5.l = 0.1; x6.l = 0.1; x7.l = 0.1; x8.l = 0.1; x9.l = 0.1; x10.l = 0.1; x11.l = 0.1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f