MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sfacloc1_3_95
Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 3 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer may be served by more than one facility. The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 3.37345429 (ANTIGONE) 2.67442225 (BARON) 0.54070042 (COUENNE) 7.45768863 (GUROBI) 3.80880534 (LINDO) 4.99765340 (SCIP) 0.00000000 (SHOT) 5.34186432 (XPRESS) |
| Referencesⓘ | Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957. |
| Sourceⓘ | instance CCFACLOC/1B2C/M2_2/M2_2_1B2C_15_3_95_5000.nl from François Margot stochastic instances collection |
| Applicationⓘ | Facility Location |
| Added to libraryⓘ | 12 Aug 2014 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 233 |
| #Binary Variablesⓘ | 9 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 98 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 15 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 281 |
| #Linear Constraintsⓘ | 266 |
| #Quadratic Constraintsⓘ | 7 |
| #Polynomial Constraintsⓘ | 8 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 745 |
| #Nonlinear Nonzeros in Jacobianⓘ | 98 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 186 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 29 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
| Average blocksize in Hessian of Lagrangianⓘ | 3.37931 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 2.8000e-01 |
| Maximal coefficientⓘ | 9.9280e+01 |
| Infeasibility of initial pointⓘ | 94.77 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 282 84 180 18 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 234 225 9 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 761 663 98 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
,x221,x222,x223,x224,b225,b226,b227,b228,b229,b230,b231,b232,b233
,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85
,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101
,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x120
,x121,x122,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133
,x134,x135,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146
,x147,x148,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159
,x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172
,x173,x174,x175,x176,x177,x178,x179,x180,x181,x182,x183,x184,x185
,x186,x187,x188,x189,x190,x191,x192,x193,x194,x195,x196,x197,x198
,x199,x200,x201,x202,x203,x204,x205,x206,x207,x208,x209,x210,x211
,x212,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222,x223,x224;
Binary Variables b225,b226,b227,b228,b229,b230,b231,b232,b233;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259
,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272
,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282;
e1.. x99 + x100 + x101 + x102 + x103 + x104 + x105 + x106 + x107 + x108
+ x109 + x110 + x111 + x112 + x113 - objvar =E= 0;
e2.. (-1.01*x1*x46) - 1.01*x2*x47 - 1.01*x3*x48 - 1.01*x46*x1 - 1.01*x47*x2 -
1.01*x48*x3 + x210 =E= 0;
e3.. (-2.00666666666667*x4*x49) - 2.00666666666667*x5*x50 - 2.00666666666667*x6
*x51 - 2.00666666666667*x49*x4 - 2.00666666666667*x50*x5 -
2.00666666666667*x51*x6 + x211 =E= 0;
e4.. (-2.38*x7*x52) - 2.38*x8*x53 - 2.38*x9*x54 - 2.38*x52*x7 - 2.38*x53*x8 -
2.38*x54*x9 + x212 =E= 0;
e5.. -(x91*x55*x10 + x91*x56*x11 + x91*x57*x12) + x213 =E= 0;
e6.. -(x92*x58*x13 + x92*x59*x14 + x92*x60*x15) + x214 =E= 0;
e7.. -(x93*x61*x16 + x93*x62*x17 + x93*x63*x18) + x215 =E= 0;
e8.. (-3.29666666666667*x19*x64) - 3.29666666666667*x20*x65 - 3.29666666666667*
x21*x66 - 3.29666666666667*x64*x19 - 3.29666666666667*x65*x20 -
3.29666666666667*x66*x21 + x216 =E= 0;
e9.. -(x94*x67*x22 + x94*x68*x23 + x94*x69*x24) + x217 =E= 0;
e10.. -(x95*x70*x25 + x95*x71*x26 + x95*x72*x27) + x218 =E= 0;
e11.. -(x96*x73*x28 + x96*x74*x29 + x96*x75*x30) + x219 =E= 0;
e12.. -(x97*x76*x31 + x97*x77*x32 + x97*x78*x33) + x220 =E= 0;
e13.. (-40.4533333333333*x34*x79) - 40.4533333333333*x35*x80 - 40.4533333333333
*x36*x81 - 40.4533333333333*x79*x34 - 40.4533333333333*x80*x35 -
40.4533333333333*x81*x36 + x221 =E= 0;
e14.. (-13.0733333333333*x37*x82) - 13.0733333333333*x38*x83 - 13.0733333333333
*x39*x84 - 13.0733333333333*x82*x37 - 13.0733333333333*x83*x38 -
13.0733333333333*x84*x39 + x222 =E= 0;
e15.. (-19*x40*x85) - 19*x41*x86 - 19*x42*x87 - 19*x85*x40 - 19*x86*x41 - 19*
x87*x42 + x223 =E= 0;
e16.. -(x98*x88*x43 + x98*x89*x44 + x98*x90*x45) + x224 =E= 0;
e17.. x1 + x2 + x3 =E= 1;
e18.. x4 + x5 + x6 =E= 1;
e19.. x7 + x8 + x9 =E= 1;
e20.. x10 + x11 + x12 =E= 1;
e21.. x13 + x14 + x15 =E= 1;
e22.. x16 + x17 + x18 =E= 1;
e23.. x19 + x20 + x21 =E= 1;
e24.. x22 + x23 + x24 =E= 1;
e25.. x25 + x26 + x27 =E= 1;
e26.. x28 + x29 + x30 =E= 1;
e27.. x31 + x32 + x33 =E= 1;
e28.. x34 + x35 + x36 =E= 1;
e29.. x37 + x38 + x39 =E= 1;
e30.. x40 + x41 + x42 =E= 1;
e31.. x43 + x44 + x45 =E= 1;
e32.. 2.02*x1 + 4.01333333333333*x4 + 4.76*x7 + 5.96*x10
+ 42.0933333333333*x13 + 99.28*x16 + 6.59333333333333*x19
+ 61.8666666666667*x22 + 56.2866666666667*x25 + 41.5*x28
+ 62.4933333333333*x31 + 80.9066666666667*x34 + 26.1466666666667*x37
+ 38*x40 + 62.24*x43 =L= 213.053333333333;
e33.. 2.02*x2 + 4.01333333333333*x5 + 4.76*x8 + 5.96*x11
+ 42.0933333333333*x14 + 99.28*x17 + 6.59333333333333*x20
+ 61.8666666666667*x23 + 56.2866666666667*x26 + 41.5*x29
+ 62.4933333333333*x32 + 80.9066666666667*x35 + 26.1466666666667*x38
+ 38*x41 + 62.24*x44 =L= 213.053333333333;
e34.. 2.02*x3 + 4.01333333333333*x6 + 4.76*x9 + 5.96*x12
+ 42.0933333333333*x15 + 99.28*x18 + 6.59333333333333*x21
+ 61.8666666666667*x24 + 56.2866666666667*x27 + 41.5*x30
+ 62.4933333333333*x33 + 80.9066666666667*x36 + 26.1466666666667*x39
+ 38*x42 + 62.24*x45 =L= 213.053333333333;
e35.. x114 + x120 =G= 0.29424122;
e36.. x115 + x121 =G= 0.29424122;
e37.. x116 + x122 =G= 0.29424122;
e38.. x114 + x123 =G= 0.29760193;
e39.. x115 + x124 =G= 0.29760193;
e40.. x116 + x125 =G= 0.29760193;
e41.. x114 + x126 =G= 0.35149534;
e42.. x115 + x127 =G= 0.35149534;
e43.. x116 + x128 =G= 0.35149534;
e44.. x114 + x129 =G= 0.30458283;
e45.. x115 + x130 =G= 0.30458283;
e46.. x116 + x131 =G= 0.30458283;
e47.. x114 + x132 =G= 0.29951066;
e48.. x115 + x133 =G= 0.29951066;
e49.. x116 + x134 =G= 0.29951066;
e50.. x114 + x135 =G= 0.30694357;
e51.. x115 + x136 =G= 0.30694357;
e52.. x116 + x137 =G= 0.30694357;
e53.. x114 + x138 =G= 0.33520661;
e54.. x115 + x139 =G= 0.33520661;
e55.. x116 + x140 =G= 0.33520661;
e56.. x114 + x141 =G= 0.3400071;
e57.. x115 + x142 =G= 0.3400071;
e58.. x116 + x143 =G= 0.3400071;
e59.. x114 + x144 =G= 0.35227087;
e60.. x115 + x145 =G= 0.35227087;
e61.. x116 + x146 =G= 0.35227087;
e62.. x114 + x147 =G= 0.34225726;
e63.. x115 + x148 =G= 0.34225726;
e64.. x116 + x149 =G= 0.34225726;
e65.. x114 + x150 =G= 0.32776566;
e66.. x115 + x151 =G= 0.32776566;
e67.. x116 + x152 =G= 0.32776566;
e68.. x114 + x153 =G= 0.30438256;
e69.. x115 + x154 =G= 0.30438256;
e70.. x116 + x155 =G= 0.30438256;
e71.. x114 + x156 =G= 0.28538336;
e72.. x115 + x157 =G= 0.28538336;
e73.. x116 + x158 =G= 0.28538336;
e74.. x114 + x159 =G= 0.27950575;
e75.. x115 + x160 =G= 0.27950575;
e76.. x116 + x161 =G= 0.27950575;
e77.. - x114 + x120 =G= -0.29424122;
e78.. - x115 + x121 =G= -0.29424122;
e79.. - x116 + x122 =G= -0.29424122;
e80.. - x114 + x123 =G= -0.29760193;
e81.. - x115 + x124 =G= -0.29760193;
e82.. - x116 + x125 =G= -0.29760193;
e83.. - x114 + x126 =G= -0.35149534;
e84.. - x115 + x127 =G= -0.35149534;
e85.. - x116 + x128 =G= -0.35149534;
e86.. - x114 + x129 =G= -0.30458283;
e87.. - x115 + x130 =G= -0.30458283;
e88.. - x116 + x131 =G= -0.30458283;
e89.. - x114 + x132 =G= -0.29951066;
e90.. - x115 + x133 =G= -0.29951066;
e91.. - x116 + x134 =G= -0.29951066;
e92.. - x114 + x135 =G= -0.30694357;
e93.. - x115 + x136 =G= -0.30694357;
e94.. - x116 + x137 =G= -0.30694357;
e95.. - x114 + x138 =G= -0.33520661;
e96.. - x115 + x139 =G= -0.33520661;
e97.. - x116 + x140 =G= -0.33520661;
e98.. - x114 + x141 =G= -0.3400071;
e99.. - x115 + x142 =G= -0.3400071;
e100.. - x116 + x143 =G= -0.3400071;
e101.. - x114 + x147 =G= -0.34225726;
e102.. - x115 + x148 =G= -0.34225726;
e103.. - x116 + x149 =G= -0.34225726;
e104.. - x114 + x150 =G= -0.32776566;
e105.. - x115 + x151 =G= -0.32776566;
e106.. - x116 + x152 =G= -0.32776566;
e107.. - x114 + x153 =G= -0.30438256;
e108.. - x115 + x154 =G= -0.30438256;
e109.. - x116 + x155 =G= -0.30438256;
e110.. - x114 + x156 =G= -0.28538336;
e111.. - x115 + x157 =G= -0.28538336;
e112.. - x116 + x158 =G= -0.28538336;
e113.. - x114 + x159 =G= -0.27950575;
e114.. - x115 + x160 =G= -0.27950575;
e115.. - x116 + x161 =G= -0.27950575;
e116.. - x114 + x162 =G= -0.25788969;
e117.. - x115 + x163 =G= -0.25788969;
e118.. - x116 + x164 =G= -0.25788969;
e119.. x117 + x168 =G= -0.9536939;
e120.. x118 + x169 =G= -0.9536939;
e121.. x119 + x170 =G= -0.9536939;
e122.. x117 + x171 =G= -0.9004898;
e123.. x118 + x172 =G= -0.9004898;
e124.. x119 + x173 =G= -0.9004898;
e125.. x117 + x174 =G= -0.9114032;
e126.. x118 + x175 =G= -0.9114032;
e127.. x119 + x176 =G= -0.9114032;
e128.. x117 + x177 =G= -0.90071532;
e129.. x118 + x178 =G= -0.90071532;
e130.. x119 + x179 =G= -0.90071532;
e131.. x117 + x180 =G= -0.88043054;
e132.. x118 + x181 =G= -0.88043054;
e133.. x119 + x182 =G= -0.88043054;
e134.. x117 + x183 =G= -0.8680249;
e135.. x118 + x184 =G= -0.8680249;
e136.. x119 + x185 =G= -0.8680249;
e137.. x117 + x186 =G= -0.81034814;
e138.. x118 + x187 =G= -0.81034814;
e139.. x119 + x188 =G= -0.81034814;
e140.. x117 + x189 =G= -0.80843127;
e141.. x118 + x190 =G= -0.80843127;
e142.. x119 + x191 =G= -0.80843127;
e143.. x117 + x192 =G= -0.7794471;
e144.. x118 + x193 =G= -0.7794471;
e145.. x119 + x194 =G= -0.7794471;
e146.. x117 + x195 =G= -0.79930922;
e147.. x118 + x196 =G= -0.79930922;
e148.. x119 + x197 =G= -0.79930922;
e149.. x117 + x198 =G= -0.84280733;
e150.. x118 + x199 =G= -0.84280733;
e151.. x119 + x200 =G= -0.84280733;
e152.. x117 + x201 =G= -0.81379236;
e153.. x118 + x202 =G= -0.81379236;
e154.. x119 + x203 =G= -0.81379236;
e155.. x117 + x204 =G= -0.82457178;
e156.. x118 + x205 =G= -0.82457178;
e157.. x119 + x206 =G= -0.82457178;
e158.. x117 + x207 =G= -0.80226439;
e159.. x118 + x208 =G= -0.80226439;
e160.. x119 + x209 =G= -0.80226439;
e161.. - x117 + x165 =G= 0.98493628;
e162.. - x118 + x166 =G= 0.98493628;
e163.. - x119 + x167 =G= 0.98493628;
e164.. - x117 + x168 =G= 0.9536939;
e165.. - x118 + x169 =G= 0.9536939;
e166.. - x119 + x170 =G= 0.9536939;
e167.. - x117 + x171 =G= 0.9004898;
e168.. - x118 + x172 =G= 0.9004898;
e169.. - x119 + x173 =G= 0.9004898;
e170.. - x117 + x174 =G= 0.9114032;
e171.. - x118 + x175 =G= 0.9114032;
e172.. - x119 + x176 =G= 0.9114032;
e173.. - x117 + x177 =G= 0.90071532;
e174.. - x118 + x178 =G= 0.90071532;
e175.. - x119 + x179 =G= 0.90071532;
e176.. - x117 + x180 =G= 0.88043054;
e177.. - x118 + x181 =G= 0.88043054;
e178.. - x119 + x182 =G= 0.88043054;
e179.. - x117 + x183 =G= 0.8680249;
e180.. - x118 + x184 =G= 0.8680249;
e181.. - x119 + x185 =G= 0.8680249;
e182.. - x117 + x186 =G= 0.81034814;
e183.. - x118 + x187 =G= 0.81034814;
e184.. - x119 + x188 =G= 0.81034814;
e185.. - x117 + x189 =G= 0.80843127;
e186.. - x118 + x190 =G= 0.80843127;
e187.. - x119 + x191 =G= 0.80843127;
e188.. - x117 + x195 =G= 0.79930922;
e189.. - x118 + x196 =G= 0.79930922;
e190.. - x119 + x197 =G= 0.79930922;
e191.. - x117 + x198 =G= 0.84280733;
e192.. - x118 + x199 =G= 0.84280733;
e193.. - x119 + x200 =G= 0.84280733;
e194.. - x117 + x201 =G= 0.81379236;
e195.. - x118 + x202 =G= 0.81379236;
e196.. - x119 + x203 =G= 0.81379236;
e197.. - x117 + x204 =G= 0.82457178;
e198.. - x118 + x205 =G= 0.82457178;
e199.. - x119 + x206 =G= 0.82457178;
e200.. - x117 + x207 =G= 0.80226439;
e201.. - x118 + x208 =G= 0.80226439;
e202.. - x119 + x209 =G= 0.80226439;
e203.. x46 - x120 - x165 =E= 0;
e204.. x47 - x121 - x166 =E= 0;
e205.. x48 - x122 - x167 =E= 0;
e206.. x49 - x123 - x168 =E= 0;
e207.. x50 - x124 - x169 =E= 0;
e208.. x51 - x125 - x170 =E= 0;
e209.. x52 - x126 - x171 =E= 0;
e210.. x53 - x127 - x172 =E= 0;
e211.. x54 - x128 - x173 =E= 0;
e212.. x55 - x129 - x174 =E= 0;
e213.. x56 - x130 - x175 =E= 0;
e214.. x57 - x131 - x176 =E= 0;
e215.. x58 - x132 - x177 =E= 0;
e216.. x59 - x133 - x178 =E= 0;
e217.. x60 - x134 - x179 =E= 0;
e218.. x61 - x135 - x180 =E= 0;
e219.. x62 - x136 - x181 =E= 0;
e220.. x63 - x137 - x182 =E= 0;
e221.. x64 - x138 - x183 =E= 0;
e222.. x65 - x139 - x184 =E= 0;
e223.. x66 - x140 - x185 =E= 0;
e224.. x67 - x141 - x186 =E= 0;
e225.. x68 - x142 - x187 =E= 0;
e226.. x69 - x143 - x188 =E= 0;
e227.. x70 - x144 - x189 =E= 0;
e228.. x71 - x145 - x190 =E= 0;
e229.. x72 - x146 - x191 =E= 0;
e230.. x73 - x147 - x192 =E= 0;
e231.. x74 - x148 - x193 =E= 0;
e232.. x75 - x149 - x194 =E= 0;
e233.. x76 - x150 - x195 =E= 0;
e234.. x77 - x151 - x196 =E= 0;
e235.. x78 - x152 - x197 =E= 0;
e236.. x79 - x153 - x198 =E= 0;
e237.. x80 - x154 - x199 =E= 0;
e238.. x81 - x155 - x200 =E= 0;
e239.. x82 - x156 - x201 =E= 0;
e240.. x83 - x157 - x202 =E= 0;
e241.. x84 - x158 - x203 =E= 0;
e242.. x85 - x159 - x204 =E= 0;
e243.. x86 - x160 - x205 =E= 0;
e244.. x87 - x161 - x206 =E= 0;
e245.. x88 - x162 - x207 =E= 0;
e246.. x89 - x163 - x208 =E= 0;
e247.. x90 - x164 - x209 =E= 0;
e248.. b226 + b227 =G= 1;
e249.. b225 + b227 =G= 1;
e250.. b225 + b226 =G= 1;
e251.. b227 + b229 =G= 1;
e252.. b227 + b228 =G= 1;
e253.. b226 + b229 =G= 1;
e254.. b226 + b228 =G= 1;
e255.. b225 + b229 =G= 1;
e256.. b225 + b228 =G= 1;
e257.. b230 - b231 =G= 0;
e258.. x117 - x118 =G= 0;
e259.. x118 - x119 =G= 0;
e260.. x91 - 0.28*b225 =E= 5.68;
e261.. x92 - 1.91333333333333*b226 =E= 40.18;
e262.. x93 - 4.51333333333333*b227 =E= 94.7666666666667;
e263.. x94 - 2.81333333333333*b228 =E= 59.0533333333333;
e264.. x95 - 2.55333333333333*b229 =E= 53.7333333333333;
e265.. x96 - 1.88666666666667*b230 - 1.88666666666667*b231
=E= 37.7266666666667;
e266.. x97 - 2.84666666666667*b232 =E= 59.6466666666667;
e267.. x98 - 2.96666666666667*b233 =E= 59.2733333333333;
e268.. - x99 + x210 =L= 0;
e269.. - x100 + x211 =L= 0;
e270.. - x101 + x212 =L= 0;
e271.. - x102 + x213 =L= 0;
e272.. - x103 + x214 =L= 0;
e273.. - x104 + x215 =L= 0;
e274.. - x105 + x216 =L= 0;
e275.. - x106 + x217 =L= 0;
e276.. - x107 + x218 =L= 0;
e277.. - x108 + x219 =L= 0;
e278.. - x109 + x220 =L= 0;
e279.. - x110 + x221 =L= 0;
e280.. - x111 + x222 =L= 0;
e281.. - x112 + x223 =L= 0;
e282.. - x113 + x224 =L= 0;
* set non-default bounds
x1.up = 1;
x2.up = 1;
x3.up = 1;
x4.up = 1;
x5.up = 1;
x6.up = 1;
x7.up = 1;
x8.up = 1;
x9.up = 1;
x10.up = 1;
x11.up = 1;
x12.up = 1;
x13.up = 1;
x14.up = 1;
x15.up = 1;
x16.up = 1;
x17.up = 1;
x18.up = 1;
x19.up = 1;
x20.up = 1;
x21.up = 1;
x22.up = 1;
x23.up = 1;
x24.up = 1;
x25.up = 1;
x26.up = 1;
x27.up = 1;
x28.up = 1;
x29.up = 1;
x30.up = 1;
x31.up = 1;
x32.up = 1;
x33.up = 1;
x34.up = 1;
x35.up = 1;
x36.up = 1;
x37.up = 1;
x38.up = 1;
x39.up = 1;
x40.up = 1;
x41.up = 1;
x42.up = 1;
x43.up = 1;
x44.up = 1;
x45.up = 1;
x46.up = 0.26351883;
x47.up = 0.26351883;
x48.up = 0.26351883;
x49.up = 0.22891574;
x50.up = 0.22891574;
x51.up = 0.22891574;
x52.up = 0.21464835;
x53.up = 0.21464835;
x54.up = 0.21464835;
x55.up = 0.17964414;
x56.up = 0.17964414;
x57.up = 0.17964414;
x58.up = 0.17402843;
x59.up = 0.17402843;
x60.up = 0.17402843;
x61.up = 0.15355962;
x62.up = 0.15355962;
x63.up = 0.15355962;
x64.up = 0.1942283;
x65.up = 0.1942283;
x66.up = 0.1942283;
x67.up = 0.25670555;
x68.up = 0.25670555;
x69.up = 0.25670555;
x70.up = 0.27088619;
x71.up = 0.27088619;
x72.up = 0.27088619;
x73.up = 0.28985675;
x74.up = 0.28985675;
x75.up = 0.28985675;
x76.up = 0.25550303;
x77.up = 0.25550303;
x78.up = 0.25550303;
x79.up = 0.19001726;
x80.up = 0.19001726;
x81.up = 0.19001726;
x82.up = 0.23803143;
x83.up = 0.23803143;
x84.up = 0.23803143;
x85.up = 0.23312962;
x86.up = 0.23312962;
x87.up = 0.23312962;
x88.up = 0.27705307;
x89.up = 0.27705307;
x90.up = 0.27705307;
x91.up = 5.96;
x92.up = 42.0933333333333;
x93.up = 99.28;
x94.up = 61.8666666666667;
x95.up = 56.2866666666667;
x96.up = 41.5;
x97.up = 62.4933333333333;
x98.up = 62.24;
x99.up = 0.5323080366;
x100.up = 0.918715169866666;
x101.up = 1.021726146;
x102.up = 1.0706790744;
x103.up = 7.32543671346667;
x104.up = 15.2453990736;
x105.up = 1.28061192466667;
x106.up = 15.8815166933333;
x107.up = 15.2472806811333;
x108.up = 12.029055125;
x109.up = 15.9672360214667;
x110.up = 15.3736631157333;
x111.up = 6.2237284564;
x112.up = 8.85892556;
x113.up = 17.2437830768;
x114.lo = 0.25788969; x114.up = 0.35227087;
x115.lo = 0.25788969; x115.up = 0.35227087;
x116.lo = 0.25788969; x116.up = 0.35227087;
x117.lo = -0.98493628; x117.up = -0.7794471;
x118.lo = -0.98493628; x118.up = -0.7794471;
x119.lo = -0.98493628; x119.up = -0.7794471;
x120.up = 0.0580296499999999;
x121.up = 0.0580296499999999;
x122.up = 0.0580296499999999;
x123.up = 0.0546689399999999;
x124.up = 0.0546689399999999;
x125.up = 0.0546689399999999;
x126.up = 0.09360565;
x127.up = 0.09360565;
x128.up = 0.09360565;
x129.up = 0.0476880399999999;
x130.up = 0.0476880399999999;
x131.up = 0.0476880399999999;
x132.up = 0.05276021;
x133.up = 0.05276021;
x134.up = 0.05276021;
x135.up = 0.04905388;
x136.up = 0.04905388;
x137.up = 0.04905388;
x138.up = 0.07731692;
x139.up = 0.07731692;
x140.up = 0.07731692;
x141.up = 0.08211741;
x142.up = 0.08211741;
x143.up = 0.08211741;
x144.up = 0.09438118;
x145.up = 0.09438118;
x146.up = 0.09438118;
x147.up = 0.08436757;
x148.up = 0.08436757;
x149.up = 0.08436757;
x150.up = 0.06987597;
x151.up = 0.06987597;
x152.up = 0.06987597;
x153.up = 0.04788831;
x154.up = 0.04788831;
x155.up = 0.04788831;
x156.up = 0.0668875099999999;
x157.up = 0.0668875099999999;
x158.up = 0.0668875099999999;
x159.up = 0.07276512;
x160.up = 0.07276512;
x161.up = 0.07276512;
x162.up = 0.09438118;
x163.up = 0.09438118;
x164.up = 0.09438118;
x165.up = 0.20548918;
x166.up = 0.20548918;
x167.up = 0.20548918;
x168.up = 0.1742468;
x169.up = 0.1742468;
x170.up = 0.1742468;
x171.up = 0.1210427;
x172.up = 0.1210427;
x173.up = 0.1210427;
x174.up = 0.1319561;
x175.up = 0.1319561;
x176.up = 0.1319561;
x177.up = 0.12126822;
x178.up = 0.12126822;
x179.up = 0.12126822;
x180.up = 0.10450574;
x181.up = 0.10450574;
x182.up = 0.10450574;
x183.up = 0.11691138;
x184.up = 0.11691138;
x185.up = 0.11691138;
x186.up = 0.17458814;
x187.up = 0.17458814;
x188.up = 0.17458814;
x189.up = 0.17650501;
x190.up = 0.17650501;
x191.up = 0.17650501;
x192.up = 0.20548918;
x193.up = 0.20548918;
x194.up = 0.20548918;
x195.up = 0.18562706;
x196.up = 0.18562706;
x197.up = 0.18562706;
x198.up = 0.14212895;
x199.up = 0.14212895;
x200.up = 0.14212895;
x201.up = 0.17114392;
x202.up = 0.17114392;
x203.up = 0.17114392;
x204.up = 0.1603645;
x205.up = 0.1603645;
x206.up = 0.1603645;
x207.up = 0.18267189;
x208.up = 0.18267189;
x209.up = 0.18267189;
x210.up = 0.5323080366;
x211.up = 0.918715169866666;
x212.up = 1.021726146;
x213.up = 1.0706790744;
x214.up = 7.32543671346667;
x215.up = 15.2453990736;
x216.up = 1.28061192466667;
x217.up = 15.8815166933333;
x218.up = 15.2472806811333;
x219.up = 12.029055125;
x220.up = 15.9672360214667;
x221.up = 15.3736631157333;
x222.up = 6.2237284564;
x223.up = 8.85892556;
x224.up = 17.2437830768;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

