MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance sfacloc2_2_95

Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 2 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer is served by a single facility.
The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
19.57755165 p1 ( gdx sol )
(infeas: 2e-12)
Other points (infeas > 1e-08)  
Dual Bounds
19.57755163 (ANTIGONE)
19.57755163 (BARON)
19.57755165 (COUENNE)
19.57755165 (LINDO)
19.57755165 (SCIP)
2.08367596 (SHOT)
References Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957.
Source instance CCFACLOC/2B1C/M2_2/M2_2_1B2C_15_2_95_5000.nl from François Margot stochastic instances collection
Application Facility Location
Added to library 12 Aug 2014
Problem type MBNLP
#Variables 186
#Binary Variables 39
#Integer Variables 0
#Nonlinear Variables 68
#Nonlinear Binary Variables 30
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 15
#Nonlinear Nonzeros in Objective 0
#Constraints 239
#Linear Constraints 209
#Quadratic Constraints 14
#Polynomial Constraints 16
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 580
#Nonlinear Nonzeros in Jacobian 76
#Nonzeros in (Upper-Left) Hessian of Lagrangian 124
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 22
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 5
Average blocksize in Hessian of Lagrangian 3.090909
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 9.9280e+01
Infeasibility of initial point 1
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        240       46      162       32        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        187      148       39        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        596      520       76        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,x177,b178,b179,b180,b181
          ,b182,b183,b184,b185,b186,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x69,x70,x71,x72
          ,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x88,x89,x90,x91,x92,x93
          ,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103,x104,x105,x106,x107
          ,x108,x109,x110,x111,x112,x113,x114,x115,x116,x117,x118,x119,x120
          ,x121,x122,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133
          ,x134,x135,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146
          ,x147,x148,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159
          ,x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172
          ,x173,x174,x175,x176,x177;

Binary Variables  b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b178
          ,b179,b180,b181,b182,b183,b184,b185,b186;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
          ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
          ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
          ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
          ,e234,e235,e236,e237,e238,e239,e240;


e1..    x69 + x70 + x71 + x72 + x73 + x74 + x75 + x76 + x77 + x78 + x79 + x80
      + x81 + x82 + x83 - objvar =E= 0;

e2.. (-1.01*x1*b39) - 1.01*b39*x1 + x148 =G= 0;

e3.. (-1.01*x2*b40) - 1.01*b40*x2 + x149 =G= 0;

e4.. (-2.00666666666667*x3*b41) - 2.00666666666667*b41*x3 + x150 =G= 0;

e5.. (-2.00666666666667*x4*b42) - 2.00666666666667*b42*x4 + x151 =G= 0;

e6.. (-2.38*x5*b43) - 2.38*b43*x5 + x152 =G= 0;

e7.. (-2.38*x6*b44) - 2.38*b44*x6 + x153 =G= 0;

e8.. -x31*x7*b45 + x154 =G= 0;

e9.. -x31*x8*b46 + x155 =G= 0;

e10.. -x32*x9*b47 + x156 =G= 0;

e11.. -x32*x10*b48 + x157 =G= 0;

e12.. -x33*x11*b49 + x158 =G= 0;

e13.. -x33*x12*b50 + x159 =G= 0;

e14.. (-3.29666666666667*x13*b51) - 3.29666666666667*b51*x13 + x160 =G= 0;

e15.. (-3.29666666666667*x14*b52) - 3.29666666666667*b52*x14 + x161 =G= 0;

e16.. -x34*x15*b53 + x162 =G= 0;

e17.. -x34*x16*b54 + x163 =G= 0;

e18.. -x35*x17*b55 + x164 =G= 0;

e19.. -x35*x18*b56 + x165 =G= 0;

e20.. -x36*x19*b57 + x166 =G= 0;

e21.. -x36*x20*b58 + x167 =G= 0;

e22.. -x37*x21*b59 + x168 =G= 0;

e23.. -x37*x22*b60 + x169 =G= 0;

e24.. (-40.4533333333333*x23*b61) - 40.4533333333333*b61*x23 + x170 =G= 0;

e25.. (-40.4533333333333*x24*b62) - 40.4533333333333*b62*x24 + x171 =G= 0;

e26.. (-13.0733333333333*x25*b63) - 13.0733333333333*b63*x25 + x172 =G= 0;

e27.. (-13.0733333333333*x26*b64) - 13.0733333333333*b64*x26 + x173 =G= 0;

e28.. (-19*x27*b65) - 19*b65*x27 + x174 =G= 0;

e29.. (-19*x28*b66) - 19*b66*x28 + x175 =G= 0;

e30.. -x38*x29*b67 + x176 =G= 0;

e31.. -x38*x30*b68 + x177 =G= 0;

e32..    b39 + b40 =E= 1;

e33..    b41 + b42 =E= 1;

e34..    b43 + b44 =E= 1;

e35..    b45 + b46 =E= 1;

e36..    b47 + b48 =E= 1;

e37..    b49 + b50 =E= 1;

e38..    b51 + b52 =E= 1;

e39..    b53 + b54 =E= 1;

e40..    b55 + b56 =E= 1;

e41..    b57 + b58 =E= 1;

e42..    b59 + b60 =E= 1;

e43..    b61 + b62 =E= 1;

e44..    b63 + b64 =E= 1;

e45..    b65 + b66 =E= 1;

e46..    b67 + b68 =E= 1;

e47..    2.02*b39 + 4.01333333333333*b41 + 4.76*b43 + 5.96*b45
       + 42.0933333333333*b47 + 99.28*b49 + 6.59333333333333*b51
       + 61.8666666666667*b53 + 56.2866666666667*b55 + 41.5*b57
       + 62.4933333333333*b59 + 80.9066666666667*b61 + 26.1466666666667*b63
       + 38*b65 + 62.24*b67 =L= 302.08;

e48..    2.02*b40 + 4.01333333333333*b42 + 4.76*b44 + 5.96*b46
       + 42.0933333333333*b48 + 99.28*b50 + 6.59333333333333*b52
       + 61.8666666666667*b54 + 56.2866666666667*b56 + 41.5*b58
       + 62.4933333333333*b60 + 80.9066666666667*b62 + 26.1466666666667*b64
       + 38*b66 + 62.24*b68 =L= 302.08;

e49..    x84 + x88 =G= 0.29424122;

e50..    x85 + x89 =G= 0.29424122;

e51..    x84 + x90 =G= 0.29760193;

e52..    x85 + x91 =G= 0.29760193;

e53..    x84 + x92 =G= 0.35149534;

e54..    x85 + x93 =G= 0.35149534;

e55..    x84 + x94 =G= 0.30458283;

e56..    x85 + x95 =G= 0.30458283;

e57..    x84 + x96 =G= 0.29951066;

e58..    x85 + x97 =G= 0.29951066;

e59..    x84 + x98 =G= 0.30694357;

e60..    x85 + x99 =G= 0.30694357;

e61..    x84 + x100 =G= 0.33520661;

e62..    x85 + x101 =G= 0.33520661;

e63..    x84 + x102 =G= 0.3400071;

e64..    x85 + x103 =G= 0.3400071;

e65..    x84 + x104 =G= 0.35227087;

e66..    x85 + x105 =G= 0.35227087;

e67..    x84 + x106 =G= 0.34225726;

e68..    x85 + x107 =G= 0.34225726;

e69..    x84 + x108 =G= 0.32776566;

e70..    x85 + x109 =G= 0.32776566;

e71..    x84 + x110 =G= 0.30438256;

e72..    x85 + x111 =G= 0.30438256;

e73..    x84 + x112 =G= 0.28538336;

e74..    x85 + x113 =G= 0.28538336;

e75..    x84 + x114 =G= 0.27950575;

e76..    x85 + x115 =G= 0.27950575;

e77..  - x84 + x88 =G= -0.29424122;

e78..  - x85 + x89 =G= -0.29424122;

e79..  - x84 + x90 =G= -0.29760193;

e80..  - x85 + x91 =G= -0.29760193;

e81..  - x84 + x92 =G= -0.35149534;

e82..  - x85 + x93 =G= -0.35149534;

e83..  - x84 + x94 =G= -0.30458283;

e84..  - x85 + x95 =G= -0.30458283;

e85..  - x84 + x96 =G= -0.29951066;

e86..  - x85 + x97 =G= -0.29951066;

e87..  - x84 + x98 =G= -0.30694357;

e88..  - x85 + x99 =G= -0.30694357;

e89..  - x84 + x100 =G= -0.33520661;

e90..  - x85 + x101 =G= -0.33520661;

e91..  - x84 + x102 =G= -0.3400071;

e92..  - x85 + x103 =G= -0.3400071;

e93..  - x84 + x106 =G= -0.34225726;

e94..  - x85 + x107 =G= -0.34225726;

e95..  - x84 + x108 =G= -0.32776566;

e96..  - x85 + x109 =G= -0.32776566;

e97..  - x84 + x110 =G= -0.30438256;

e98..  - x85 + x111 =G= -0.30438256;

e99..  - x84 + x112 =G= -0.28538336;

e100..  - x85 + x113 =G= -0.28538336;

e101..  - x84 + x114 =G= -0.27950575;

e102..  - x85 + x115 =G= -0.27950575;

e103..  - x84 + x116 =G= -0.25788969;

e104..  - x85 + x117 =G= -0.25788969;

e105..    x86 + x120 =G= -0.9536939;

e106..    x87 + x121 =G= -0.9536939;

e107..    x86 + x122 =G= -0.9004898;

e108..    x87 + x123 =G= -0.9004898;

e109..    x86 + x124 =G= -0.9114032;

e110..    x87 + x125 =G= -0.9114032;

e111..    x86 + x126 =G= -0.90071532;

e112..    x87 + x127 =G= -0.90071532;

e113..    x86 + x128 =G= -0.88043054;

e114..    x87 + x129 =G= -0.88043054;

e115..    x86 + x130 =G= -0.8680249;

e116..    x87 + x131 =G= -0.8680249;

e117..    x86 + x132 =G= -0.81034814;

e118..    x87 + x133 =G= -0.81034814;

e119..    x86 + x134 =G= -0.80843127;

e120..    x87 + x135 =G= -0.80843127;

e121..    x86 + x136 =G= -0.7794471;

e122..    x87 + x137 =G= -0.7794471;

e123..    x86 + x138 =G= -0.79930922;

e124..    x87 + x139 =G= -0.79930922;

e125..    x86 + x140 =G= -0.84280733;

e126..    x87 + x141 =G= -0.84280733;

e127..    x86 + x142 =G= -0.81379236;

e128..    x87 + x143 =G= -0.81379236;

e129..    x86 + x144 =G= -0.82457178;

e130..    x87 + x145 =G= -0.82457178;

e131..    x86 + x146 =G= -0.80226439;

e132..    x87 + x147 =G= -0.80226439;

e133..  - x86 + x118 =G= 0.98493628;

e134..  - x87 + x119 =G= 0.98493628;

e135..  - x86 + x120 =G= 0.9536939;

e136..  - x87 + x121 =G= 0.9536939;

e137..  - x86 + x122 =G= 0.9004898;

e138..  - x87 + x123 =G= 0.9004898;

e139..  - x86 + x124 =G= 0.9114032;

e140..  - x87 + x125 =G= 0.9114032;

e141..  - x86 + x126 =G= 0.90071532;

e142..  - x87 + x127 =G= 0.90071532;

e143..  - x86 + x128 =G= 0.88043054;

e144..  - x87 + x129 =G= 0.88043054;

e145..  - x86 + x130 =G= 0.8680249;

e146..  - x87 + x131 =G= 0.8680249;

e147..  - x86 + x132 =G= 0.81034814;

e148..  - x87 + x133 =G= 0.81034814;

e149..  - x86 + x134 =G= 0.80843127;

e150..  - x87 + x135 =G= 0.80843127;

e151..  - x86 + x138 =G= 0.79930922;

e152..  - x87 + x139 =G= 0.79930922;

e153..  - x86 + x140 =G= 0.84280733;

e154..  - x87 + x141 =G= 0.84280733;

e155..  - x86 + x142 =G= 0.81379236;

e156..  - x87 + x143 =G= 0.81379236;

e157..  - x86 + x144 =G= 0.82457178;

e158..  - x87 + x145 =G= 0.82457178;

e159..  - x86 + x146 =G= 0.80226439;

e160..  - x87 + x147 =G= 0.80226439;

e161..    x1 - x88 - x118 =E= 0;

e162..    x2 - x89 - x119 =E= 0;

e163..    x3 - x90 - x120 =E= 0;

e164..    x4 - x91 - x121 =E= 0;

e165..    x5 - x92 - x122 =E= 0;

e166..    x6 - x93 - x123 =E= 0;

e167..    x7 - x94 - x124 =E= 0;

e168..    x8 - x95 - x125 =E= 0;

e169..    x9 - x96 - x126 =E= 0;

e170..    x10 - x97 - x127 =E= 0;

e171..    x11 - x98 - x128 =E= 0;

e172..    x12 - x99 - x129 =E= 0;

e173..    x13 - x100 - x130 =E= 0;

e174..    x14 - x101 - x131 =E= 0;

e175..    x15 - x102 - x132 =E= 0;

e176..    x16 - x103 - x133 =E= 0;

e177..    x17 - x104 - x134 =E= 0;

e178..    x18 - x105 - x135 =E= 0;

e179..    x19 - x106 - x136 =E= 0;

e180..    x20 - x107 - x137 =E= 0;

e181..    x21 - x108 - x138 =E= 0;

e182..    x22 - x109 - x139 =E= 0;

e183..    x23 - x110 - x140 =E= 0;

e184..    x24 - x111 - x141 =E= 0;

e185..    x25 - x112 - x142 =E= 0;

e186..    x26 - x113 - x143 =E= 0;

e187..    x27 - x114 - x144 =E= 0;

e188..    x28 - x115 - x145 =E= 0;

e189..    x29 - x116 - x146 =E= 0;

e190..    x30 - x117 - x147 =E= 0;

e191..    b179 + b180 =G= 1;

e192..    b178 + b180 =G= 1;

e193..    b178 + b179 =G= 1;

e194..    b180 + b182 =G= 1;

e195..    b180 + b181 =G= 1;

e196..    b179 + b182 =G= 1;

e197..    b179 + b181 =G= 1;

e198..    b178 + b182 =G= 1;

e199..    b178 + b181 =G= 1;

e200..    x31 - 5.96*b178 =G= 0;

e201..    x32 - 42.0933333333333*b179 =G= 0;

e202..    x33 - 99.28*b180 =G= 0;

e203..    x34 - 61.8666666666667*b181 =G= 0;

e204..    x35 - 56.2866666666667*b182 =G= 0;

e205..    x36 - 39.6133333333333*b183 =G= 0;

e206..    x36 - 41.5*b184 =G= 0;

e207..    x37 - 62.4933333333333*b185 =G= 0;

e208..    x38 - 62.24*b186 =G= 0;

e209..  - x69 + x148 =L= 0;

e210..  - x69 + x149 =L= 0;

e211..  - x70 + x150 =L= 0;

e212..  - x70 + x151 =L= 0;

e213..  - x71 + x152 =L= 0;

e214..  - x71 + x153 =L= 0;

e215..  - x72 + x154 =L= 0;

e216..  - x72 + x155 =L= 0;

e217..  - x73 + x156 =L= 0;

e218..  - x73 + x157 =L= 0;

e219..  - x74 + x158 =L= 0;

e220..  - x74 + x159 =L= 0;

e221..  - x75 + x160 =L= 0;

e222..  - x75 + x161 =L= 0;

e223..  - x76 + x162 =L= 0;

e224..  - x76 + x163 =L= 0;

e225..  - x77 + x164 =L= 0;

e226..  - x77 + x165 =L= 0;

e227..  - x78 + x166 =L= 0;

e228..  - x78 + x167 =L= 0;

e229..  - x79 + x168 =L= 0;

e230..  - x79 + x169 =L= 0;

e231..  - x80 + x170 =L= 0;

e232..  - x80 + x171 =L= 0;

e233..  - x81 + x172 =L= 0;

e234..  - x81 + x173 =L= 0;

e235..  - x82 + x174 =L= 0;

e236..  - x82 + x175 =L= 0;

e237..  - x83 + x176 =L= 0;

e238..  - x83 + x177 =L= 0;

e239..    b183 - b184 =G= 0;

e240..    x86 - x87 =G= 0;

* set non-default bounds
x1.up = 0.26351883;
x2.up = 0.26351883;
x3.up = 0.22891574;
x4.up = 0.22891574;
x5.up = 0.21464835;
x6.up = 0.21464835;
x7.up = 0.17964414;
x8.up = 0.17964414;
x9.up = 0.17402843;
x10.up = 0.17402843;
x11.up = 0.15355962;
x12.up = 0.15355962;
x13.up = 0.1942283;
x14.up = 0.1942283;
x15.up = 0.25670555;
x16.up = 0.25670555;
x17.up = 0.27088619;
x18.up = 0.27088619;
x19.up = 0.28985675;
x20.up = 0.28985675;
x21.up = 0.25550303;
x22.up = 0.25550303;
x23.up = 0.19001726;
x24.up = 0.19001726;
x25.up = 0.23803143;
x26.up = 0.23803143;
x27.up = 0.23312962;
x28.up = 0.23312962;
x29.up = 0.27705307;
x30.up = 0.27705307;
x31.lo = 5.68; x31.up = 5.96;
x32.lo = 40.18; x32.up = 42.0933333333333;
x33.lo = 94.7666666666667; x33.up = 99.28;
x34.lo = 59.0533333333333; x34.up = 61.8666666666667;
x35.lo = 53.7333333333333; x35.up = 56.2866666666667;
x36.lo = 37.7266666666667; x36.up = 41.5;
x37.lo = 59.6466666666667; x37.up = 62.4933333333333;
x38.lo = 59.2733333333333; x38.up = 62.24;
x69.up = 0.5323080366;
x70.up = 0.918715169866666;
x71.up = 1.021726146;
x72.up = 1.0706790744;
x73.up = 7.32543671346667;
x74.up = 15.2453990736;
x75.up = 1.28061192466667;
x76.up = 15.8815166933333;
x77.up = 15.2472806811333;
x78.up = 12.029055125;
x79.up = 15.9672360214667;
x80.up = 15.3736631157333;
x81.up = 6.2237284564;
x82.up = 8.85892556;
x83.up = 17.2437830768;
x84.lo = 0.25788969; x84.up = 0.35227087;
x85.lo = 0.25788969; x85.up = 0.35227087;
x86.lo = -0.98493628; x86.up = -0.7794471;
x87.lo = -0.98493628; x87.up = -0.7794471;
x88.up = 0.0580296499999999;
x89.up = 0.0580296499999999;
x90.up = 0.0546689399999999;
x91.up = 0.0546689399999999;
x92.up = 0.09360565;
x93.up = 0.09360565;
x94.up = 0.0476880399999999;
x95.up = 0.0476880399999999;
x96.up = 0.05276021;
x97.up = 0.05276021;
x98.up = 0.04905388;
x99.up = 0.04905388;
x100.up = 0.07731692;
x101.up = 0.07731692;
x102.up = 0.08211741;
x103.up = 0.08211741;
x104.up = 0.09438118;
x105.up = 0.09438118;
x106.up = 0.08436757;
x107.up = 0.08436757;
x108.up = 0.06987597;
x109.up = 0.06987597;
x110.up = 0.04788831;
x111.up = 0.04788831;
x112.up = 0.0668875099999999;
x113.up = 0.0668875099999999;
x114.up = 0.07276512;
x115.up = 0.07276512;
x116.up = 0.09438118;
x117.up = 0.09438118;
x118.up = 0.20548918;
x119.up = 0.20548918;
x120.up = 0.1742468;
x121.up = 0.1742468;
x122.up = 0.1210427;
x123.up = 0.1210427;
x124.up = 0.1319561;
x125.up = 0.1319561;
x126.up = 0.12126822;
x127.up = 0.12126822;
x128.up = 0.10450574;
x129.up = 0.10450574;
x130.up = 0.11691138;
x131.up = 0.11691138;
x132.up = 0.17458814;
x133.up = 0.17458814;
x134.up = 0.17650501;
x135.up = 0.17650501;
x136.up = 0.20548918;
x137.up = 0.20548918;
x138.up = 0.18562706;
x139.up = 0.18562706;
x140.up = 0.14212895;
x141.up = 0.14212895;
x142.up = 0.17114392;
x143.up = 0.17114392;
x144.up = 0.1603645;
x145.up = 0.1603645;
x146.up = 0.18267189;
x147.up = 0.18267189;
x148.up = 0.5323080366;
x149.up = 0.5323080366;
x150.up = 0.918715169866666;
x151.up = 0.918715169866666;
x152.up = 1.021726146;
x153.up = 1.021726146;
x154.up = 1.0706790744;
x155.up = 1.0706790744;
x156.up = 7.32543671346667;
x157.up = 7.32543671346667;
x158.up = 15.2453990736;
x159.up = 15.2453990736;
x160.up = 1.28061192466667;
x161.up = 1.28061192466667;
x162.up = 15.8815166933333;
x163.up = 15.8815166933333;
x164.up = 15.2472806811333;
x165.up = 15.2472806811333;
x166.up = 12.029055125;
x167.up = 12.029055125;
x168.up = 15.9672360214667;
x169.up = 15.9672360214667;
x170.up = 15.3736631157333;
x171.up = 15.3736631157333;
x172.up = 6.2237284564;
x173.up = 6.2237284564;
x174.up = 8.85892556;
x175.up = 8.85892556;
x176.up = 17.2437830768;
x177.up = 17.2437830768;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-04-26 Git hash: de668763
Imprint / Privacy Policy / License: CC-BY 4.0