MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sfacloc2_2_95
Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 2 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer is served by a single facility. The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 19.57755163 (ANTIGONE) 19.57755163 (BARON) 19.57755165 (COUENNE) 19.57755165 (LINDO) 19.57755165 (SCIP) 2.08367596 (SHOT) |
Referencesⓘ | Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957. |
Sourceⓘ | instance CCFACLOC/2B1C/M2_2/M2_2_1B2C_15_2_95_5000.nl from François Margot stochastic instances collection |
Applicationⓘ | Facility Location |
Added to libraryⓘ | 12 Aug 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 186 |
#Binary Variablesⓘ | 39 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 68 |
#Nonlinear Binary Variablesⓘ | 30 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 15 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 239 |
#Linear Constraintsⓘ | 209 |
#Quadratic Constraintsⓘ | 14 |
#Polynomial Constraintsⓘ | 16 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 580 |
#Nonlinear Nonzeros in Jacobianⓘ | 76 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 124 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 22 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
Average blocksize in Hessian of Lagrangianⓘ | 3.090909 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 9.9280e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 240 46 162 32 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 187 148 39 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 596 520 76 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,b178,b179,b180,b181 ,b182,b183,b184,b185,b186,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x69,x70,x71,x72 ,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x88,x89,x90,x91,x92,x93 ,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103,x104,x105,x106,x107 ,x108,x109,x110,x111,x112,x113,x114,x115,x116,x117,x118,x119,x120 ,x121,x122,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133 ,x134,x135,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146 ,x147,x148,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159 ,x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172 ,x173,x174,x175,x176,x177; Binary Variables b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b178 ,b179,b180,b181,b182,b183,b184,b185,b186; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233 ,e234,e235,e236,e237,e238,e239,e240; e1.. x69 + x70 + x71 + x72 + x73 + x74 + x75 + x76 + x77 + x78 + x79 + x80 + x81 + x82 + x83 - objvar =E= 0; e2.. (-1.01*x1*b39) - 1.01*b39*x1 + x148 =G= 0; e3.. (-1.01*x2*b40) - 1.01*b40*x2 + x149 =G= 0; e4.. (-2.00666666666667*x3*b41) - 2.00666666666667*b41*x3 + x150 =G= 0; e5.. (-2.00666666666667*x4*b42) - 2.00666666666667*b42*x4 + x151 =G= 0; e6.. (-2.38*x5*b43) - 2.38*b43*x5 + x152 =G= 0; e7.. (-2.38*x6*b44) - 2.38*b44*x6 + x153 =G= 0; e8.. -x31*x7*b45 + x154 =G= 0; e9.. -x31*x8*b46 + x155 =G= 0; e10.. -x32*x9*b47 + x156 =G= 0; e11.. -x32*x10*b48 + x157 =G= 0; e12.. -x33*x11*b49 + x158 =G= 0; e13.. -x33*x12*b50 + x159 =G= 0; e14.. (-3.29666666666667*x13*b51) - 3.29666666666667*b51*x13 + x160 =G= 0; e15.. (-3.29666666666667*x14*b52) - 3.29666666666667*b52*x14 + x161 =G= 0; e16.. -x34*x15*b53 + x162 =G= 0; e17.. -x34*x16*b54 + x163 =G= 0; e18.. -x35*x17*b55 + x164 =G= 0; e19.. -x35*x18*b56 + x165 =G= 0; e20.. -x36*x19*b57 + x166 =G= 0; e21.. -x36*x20*b58 + x167 =G= 0; e22.. -x37*x21*b59 + x168 =G= 0; e23.. -x37*x22*b60 + x169 =G= 0; e24.. (-40.4533333333333*x23*b61) - 40.4533333333333*b61*x23 + x170 =G= 0; e25.. (-40.4533333333333*x24*b62) - 40.4533333333333*b62*x24 + x171 =G= 0; e26.. (-13.0733333333333*x25*b63) - 13.0733333333333*b63*x25 + x172 =G= 0; e27.. (-13.0733333333333*x26*b64) - 13.0733333333333*b64*x26 + x173 =G= 0; e28.. (-19*x27*b65) - 19*b65*x27 + x174 =G= 0; e29.. (-19*x28*b66) - 19*b66*x28 + x175 =G= 0; e30.. -x38*x29*b67 + x176 =G= 0; e31.. -x38*x30*b68 + x177 =G= 0; e32.. b39 + b40 =E= 1; e33.. b41 + b42 =E= 1; e34.. b43 + b44 =E= 1; e35.. b45 + b46 =E= 1; e36.. b47 + b48 =E= 1; e37.. b49 + b50 =E= 1; e38.. b51 + b52 =E= 1; e39.. b53 + b54 =E= 1; e40.. b55 + b56 =E= 1; e41.. b57 + b58 =E= 1; e42.. b59 + b60 =E= 1; e43.. b61 + b62 =E= 1; e44.. b63 + b64 =E= 1; e45.. b65 + b66 =E= 1; e46.. b67 + b68 =E= 1; e47.. 2.02*b39 + 4.01333333333333*b41 + 4.76*b43 + 5.96*b45 + 42.0933333333333*b47 + 99.28*b49 + 6.59333333333333*b51 + 61.8666666666667*b53 + 56.2866666666667*b55 + 41.5*b57 + 62.4933333333333*b59 + 80.9066666666667*b61 + 26.1466666666667*b63 + 38*b65 + 62.24*b67 =L= 302.08; e48.. 2.02*b40 + 4.01333333333333*b42 + 4.76*b44 + 5.96*b46 + 42.0933333333333*b48 + 99.28*b50 + 6.59333333333333*b52 + 61.8666666666667*b54 + 56.2866666666667*b56 + 41.5*b58 + 62.4933333333333*b60 + 80.9066666666667*b62 + 26.1466666666667*b64 + 38*b66 + 62.24*b68 =L= 302.08; e49.. x84 + x88 =G= 0.29424122; e50.. x85 + x89 =G= 0.29424122; e51.. x84 + x90 =G= 0.29760193; e52.. x85 + x91 =G= 0.29760193; e53.. x84 + x92 =G= 0.35149534; e54.. x85 + x93 =G= 0.35149534; e55.. x84 + x94 =G= 0.30458283; e56.. x85 + x95 =G= 0.30458283; e57.. x84 + x96 =G= 0.29951066; e58.. x85 + x97 =G= 0.29951066; e59.. x84 + x98 =G= 0.30694357; e60.. x85 + x99 =G= 0.30694357; e61.. x84 + x100 =G= 0.33520661; e62.. x85 + x101 =G= 0.33520661; e63.. x84 + x102 =G= 0.3400071; e64.. x85 + x103 =G= 0.3400071; e65.. x84 + x104 =G= 0.35227087; e66.. x85 + x105 =G= 0.35227087; e67.. x84 + x106 =G= 0.34225726; e68.. x85 + x107 =G= 0.34225726; e69.. x84 + x108 =G= 0.32776566; e70.. x85 + x109 =G= 0.32776566; e71.. x84 + x110 =G= 0.30438256; e72.. x85 + x111 =G= 0.30438256; e73.. x84 + x112 =G= 0.28538336; e74.. x85 + x113 =G= 0.28538336; e75.. x84 + x114 =G= 0.27950575; e76.. x85 + x115 =G= 0.27950575; e77.. - x84 + x88 =G= -0.29424122; e78.. - x85 + x89 =G= -0.29424122; e79.. - x84 + x90 =G= -0.29760193; e80.. - x85 + x91 =G= -0.29760193; e81.. - x84 + x92 =G= -0.35149534; e82.. - x85 + x93 =G= -0.35149534; e83.. - x84 + x94 =G= -0.30458283; e84.. - x85 + x95 =G= -0.30458283; e85.. - x84 + x96 =G= -0.29951066; e86.. - x85 + x97 =G= -0.29951066; e87.. - x84 + x98 =G= -0.30694357; e88.. - x85 + x99 =G= -0.30694357; e89.. - x84 + x100 =G= -0.33520661; e90.. - x85 + x101 =G= -0.33520661; e91.. - x84 + x102 =G= -0.3400071; e92.. - x85 + x103 =G= -0.3400071; e93.. - x84 + x106 =G= -0.34225726; e94.. - x85 + x107 =G= -0.34225726; e95.. - x84 + x108 =G= -0.32776566; e96.. - x85 + x109 =G= -0.32776566; e97.. - x84 + x110 =G= -0.30438256; e98.. - x85 + x111 =G= -0.30438256; e99.. - x84 + x112 =G= -0.28538336; e100.. - x85 + x113 =G= -0.28538336; e101.. - x84 + x114 =G= -0.27950575; e102.. - x85 + x115 =G= -0.27950575; e103.. - x84 + x116 =G= -0.25788969; e104.. - x85 + x117 =G= -0.25788969; e105.. x86 + x120 =G= -0.9536939; e106.. x87 + x121 =G= -0.9536939; e107.. x86 + x122 =G= -0.9004898; e108.. x87 + x123 =G= -0.9004898; e109.. x86 + x124 =G= -0.9114032; e110.. x87 + x125 =G= -0.9114032; e111.. x86 + x126 =G= -0.90071532; e112.. x87 + x127 =G= -0.90071532; e113.. x86 + x128 =G= -0.88043054; e114.. x87 + x129 =G= -0.88043054; e115.. x86 + x130 =G= -0.8680249; e116.. x87 + x131 =G= -0.8680249; e117.. x86 + x132 =G= -0.81034814; e118.. x87 + x133 =G= -0.81034814; e119.. x86 + x134 =G= -0.80843127; e120.. x87 + x135 =G= -0.80843127; e121.. x86 + x136 =G= -0.7794471; e122.. x87 + x137 =G= -0.7794471; e123.. x86 + x138 =G= -0.79930922; e124.. x87 + x139 =G= -0.79930922; e125.. x86 + x140 =G= -0.84280733; e126.. x87 + x141 =G= -0.84280733; e127.. x86 + x142 =G= -0.81379236; e128.. x87 + x143 =G= -0.81379236; e129.. x86 + x144 =G= -0.82457178; e130.. x87 + x145 =G= -0.82457178; e131.. x86 + x146 =G= -0.80226439; e132.. x87 + x147 =G= -0.80226439; e133.. - x86 + x118 =G= 0.98493628; e134.. - x87 + x119 =G= 0.98493628; e135.. - x86 + x120 =G= 0.9536939; e136.. - x87 + x121 =G= 0.9536939; e137.. - x86 + x122 =G= 0.9004898; e138.. - x87 + x123 =G= 0.9004898; e139.. - x86 + x124 =G= 0.9114032; e140.. - x87 + x125 =G= 0.9114032; e141.. - x86 + x126 =G= 0.90071532; e142.. - x87 + x127 =G= 0.90071532; e143.. - x86 + x128 =G= 0.88043054; e144.. - x87 + x129 =G= 0.88043054; e145.. - x86 + x130 =G= 0.8680249; e146.. - x87 + x131 =G= 0.8680249; e147.. - x86 + x132 =G= 0.81034814; e148.. - x87 + x133 =G= 0.81034814; e149.. - x86 + x134 =G= 0.80843127; e150.. - x87 + x135 =G= 0.80843127; e151.. - x86 + x138 =G= 0.79930922; e152.. - x87 + x139 =G= 0.79930922; e153.. - x86 + x140 =G= 0.84280733; e154.. - x87 + x141 =G= 0.84280733; e155.. - x86 + x142 =G= 0.81379236; e156.. - x87 + x143 =G= 0.81379236; e157.. - x86 + x144 =G= 0.82457178; e158.. - x87 + x145 =G= 0.82457178; e159.. - x86 + x146 =G= 0.80226439; e160.. - x87 + x147 =G= 0.80226439; e161.. x1 - x88 - x118 =E= 0; e162.. x2 - x89 - x119 =E= 0; e163.. x3 - x90 - x120 =E= 0; e164.. x4 - x91 - x121 =E= 0; e165.. x5 - x92 - x122 =E= 0; e166.. x6 - x93 - x123 =E= 0; e167.. x7 - x94 - x124 =E= 0; e168.. x8 - x95 - x125 =E= 0; e169.. x9 - x96 - x126 =E= 0; e170.. x10 - x97 - x127 =E= 0; e171.. x11 - x98 - x128 =E= 0; e172.. x12 - x99 - x129 =E= 0; e173.. x13 - x100 - x130 =E= 0; e174.. x14 - x101 - x131 =E= 0; e175.. x15 - x102 - x132 =E= 0; e176.. x16 - x103 - x133 =E= 0; e177.. x17 - x104 - x134 =E= 0; e178.. x18 - x105 - x135 =E= 0; e179.. x19 - x106 - x136 =E= 0; e180.. x20 - x107 - x137 =E= 0; e181.. x21 - x108 - x138 =E= 0; e182.. x22 - x109 - x139 =E= 0; e183.. x23 - x110 - x140 =E= 0; e184.. x24 - x111 - x141 =E= 0; e185.. x25 - x112 - x142 =E= 0; e186.. x26 - x113 - x143 =E= 0; e187.. x27 - x114 - x144 =E= 0; e188.. x28 - x115 - x145 =E= 0; e189.. x29 - x116 - x146 =E= 0; e190.. x30 - x117 - x147 =E= 0; e191.. b179 + b180 =G= 1; e192.. b178 + b180 =G= 1; e193.. b178 + b179 =G= 1; e194.. b180 + b182 =G= 1; e195.. b180 + b181 =G= 1; e196.. b179 + b182 =G= 1; e197.. b179 + b181 =G= 1; e198.. b178 + b182 =G= 1; e199.. b178 + b181 =G= 1; e200.. x31 - 5.96*b178 =G= 0; e201.. x32 - 42.0933333333333*b179 =G= 0; e202.. x33 - 99.28*b180 =G= 0; e203.. x34 - 61.8666666666667*b181 =G= 0; e204.. x35 - 56.2866666666667*b182 =G= 0; e205.. x36 - 39.6133333333333*b183 =G= 0; e206.. x36 - 41.5*b184 =G= 0; e207.. x37 - 62.4933333333333*b185 =G= 0; e208.. x38 - 62.24*b186 =G= 0; e209.. - x69 + x148 =L= 0; e210.. - x69 + x149 =L= 0; e211.. - x70 + x150 =L= 0; e212.. - x70 + x151 =L= 0; e213.. - x71 + x152 =L= 0; e214.. - x71 + x153 =L= 0; e215.. - x72 + x154 =L= 0; e216.. - x72 + x155 =L= 0; e217.. - x73 + x156 =L= 0; e218.. - x73 + x157 =L= 0; e219.. - x74 + x158 =L= 0; e220.. - x74 + x159 =L= 0; e221.. - x75 + x160 =L= 0; e222.. - x75 + x161 =L= 0; e223.. - x76 + x162 =L= 0; e224.. - x76 + x163 =L= 0; e225.. - x77 + x164 =L= 0; e226.. - x77 + x165 =L= 0; e227.. - x78 + x166 =L= 0; e228.. - x78 + x167 =L= 0; e229.. - x79 + x168 =L= 0; e230.. - x79 + x169 =L= 0; e231.. - x80 + x170 =L= 0; e232.. - x80 + x171 =L= 0; e233.. - x81 + x172 =L= 0; e234.. - x81 + x173 =L= 0; e235.. - x82 + x174 =L= 0; e236.. - x82 + x175 =L= 0; e237.. - x83 + x176 =L= 0; e238.. - x83 + x177 =L= 0; e239.. b183 - b184 =G= 0; e240.. x86 - x87 =G= 0; * set non-default bounds x1.up = 0.26351883; x2.up = 0.26351883; x3.up = 0.22891574; x4.up = 0.22891574; x5.up = 0.21464835; x6.up = 0.21464835; x7.up = 0.17964414; x8.up = 0.17964414; x9.up = 0.17402843; x10.up = 0.17402843; x11.up = 0.15355962; x12.up = 0.15355962; x13.up = 0.1942283; x14.up = 0.1942283; x15.up = 0.25670555; x16.up = 0.25670555; x17.up = 0.27088619; x18.up = 0.27088619; x19.up = 0.28985675; x20.up = 0.28985675; x21.up = 0.25550303; x22.up = 0.25550303; x23.up = 0.19001726; x24.up = 0.19001726; x25.up = 0.23803143; x26.up = 0.23803143; x27.up = 0.23312962; x28.up = 0.23312962; x29.up = 0.27705307; x30.up = 0.27705307; x31.lo = 5.68; x31.up = 5.96; x32.lo = 40.18; x32.up = 42.0933333333333; x33.lo = 94.7666666666667; x33.up = 99.28; x34.lo = 59.0533333333333; x34.up = 61.8666666666667; x35.lo = 53.7333333333333; x35.up = 56.2866666666667; x36.lo = 37.7266666666667; x36.up = 41.5; x37.lo = 59.6466666666667; x37.up = 62.4933333333333; x38.lo = 59.2733333333333; x38.up = 62.24; x69.up = 0.5323080366; x70.up = 0.918715169866666; x71.up = 1.021726146; x72.up = 1.0706790744; x73.up = 7.32543671346667; x74.up = 15.2453990736; x75.up = 1.28061192466667; x76.up = 15.8815166933333; x77.up = 15.2472806811333; x78.up = 12.029055125; x79.up = 15.9672360214667; x80.up = 15.3736631157333; x81.up = 6.2237284564; x82.up = 8.85892556; x83.up = 17.2437830768; x84.lo = 0.25788969; x84.up = 0.35227087; x85.lo = 0.25788969; x85.up = 0.35227087; x86.lo = -0.98493628; x86.up = -0.7794471; x87.lo = -0.98493628; x87.up = -0.7794471; x88.up = 0.0580296499999999; x89.up = 0.0580296499999999; x90.up = 0.0546689399999999; x91.up = 0.0546689399999999; x92.up = 0.09360565; x93.up = 0.09360565; x94.up = 0.0476880399999999; x95.up = 0.0476880399999999; x96.up = 0.05276021; x97.up = 0.05276021; x98.up = 0.04905388; x99.up = 0.04905388; x100.up = 0.07731692; x101.up = 0.07731692; x102.up = 0.08211741; x103.up = 0.08211741; x104.up = 0.09438118; x105.up = 0.09438118; x106.up = 0.08436757; x107.up = 0.08436757; x108.up = 0.06987597; x109.up = 0.06987597; x110.up = 0.04788831; x111.up = 0.04788831; x112.up = 0.0668875099999999; x113.up = 0.0668875099999999; x114.up = 0.07276512; x115.up = 0.07276512; x116.up = 0.09438118; x117.up = 0.09438118; x118.up = 0.20548918; x119.up = 0.20548918; x120.up = 0.1742468; x121.up = 0.1742468; x122.up = 0.1210427; x123.up = 0.1210427; x124.up = 0.1319561; x125.up = 0.1319561; x126.up = 0.12126822; x127.up = 0.12126822; x128.up = 0.10450574; x129.up = 0.10450574; x130.up = 0.11691138; x131.up = 0.11691138; x132.up = 0.17458814; x133.up = 0.17458814; x134.up = 0.17650501; x135.up = 0.17650501; x136.up = 0.20548918; x137.up = 0.20548918; x138.up = 0.18562706; x139.up = 0.18562706; x140.up = 0.14212895; x141.up = 0.14212895; x142.up = 0.17114392; x143.up = 0.17114392; x144.up = 0.1603645; x145.up = 0.1603645; x146.up = 0.18267189; x147.up = 0.18267189; x148.up = 0.5323080366; x149.up = 0.5323080366; x150.up = 0.918715169866666; x151.up = 0.918715169866666; x152.up = 1.021726146; x153.up = 1.021726146; x154.up = 1.0706790744; x155.up = 1.0706790744; x156.up = 7.32543671346667; x157.up = 7.32543671346667; x158.up = 15.2453990736; x159.up = 15.2453990736; x160.up = 1.28061192466667; x161.up = 1.28061192466667; x162.up = 15.8815166933333; x163.up = 15.8815166933333; x164.up = 15.2472806811333; x165.up = 15.2472806811333; x166.up = 12.029055125; x167.up = 12.029055125; x168.up = 15.9672360214667; x169.up = 15.9672360214667; x170.up = 15.3736631157333; x171.up = 15.3736631157333; x172.up = 6.2237284564; x173.up = 6.2237284564; x174.up = 8.85892556; x175.up = 8.85892556; x176.up = 17.2437830768; x177.up = 17.2437830768; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f