MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sfacloc2_2_95
Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 2 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer is served by a single facility. The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 19.57755163 (ANTIGONE) 19.57755163 (BARON) 19.57755165 (COUENNE) 19.57755165 (LINDO) 19.57755165 (SCIP) 2.08367596 (SHOT) |
| Referencesⓘ | Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957. |
| Sourceⓘ | instance CCFACLOC/2B1C/M2_2/M2_2_1B2C_15_2_95_5000.nl from François Margot stochastic instances collection |
| Applicationⓘ | Facility Location |
| Added to libraryⓘ | 12 Aug 2014 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 186 |
| #Binary Variablesⓘ | 39 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 68 |
| #Nonlinear Binary Variablesⓘ | 30 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 15 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 239 |
| #Linear Constraintsⓘ | 209 |
| #Quadratic Constraintsⓘ | 14 |
| #Polynomial Constraintsⓘ | 16 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 580 |
| #Nonlinear Nonzeros in Jacobianⓘ | 76 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 124 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 22 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
| Average blocksize in Hessian of Lagrangianⓘ | 3.090909 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 9.9280e+01 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 240 46 162 32 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 187 148 39 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 596 520 76 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,x69,x70
,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,b178,b179,b180,b181
,b182,b183,b184,b185,b186,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x69,x70,x71,x72
,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x88,x89,x90,x91,x92,x93
,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103,x104,x105,x106,x107
,x108,x109,x110,x111,x112,x113,x114,x115,x116,x117,x118,x119,x120
,x121,x122,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133
,x134,x135,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146
,x147,x148,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159
,x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172
,x173,x174,x175,x176,x177;
Binary Variables b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b178
,b179,b180,b181,b182,b183,b184,b185,b186;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
,e234,e235,e236,e237,e238,e239,e240;
e1.. x69 + x70 + x71 + x72 + x73 + x74 + x75 + x76 + x77 + x78 + x79 + x80
+ x81 + x82 + x83 - objvar =E= 0;
e2.. (-1.01*x1*b39) - 1.01*b39*x1 + x148 =G= 0;
e3.. (-1.01*x2*b40) - 1.01*b40*x2 + x149 =G= 0;
e4.. (-2.00666666666667*x3*b41) - 2.00666666666667*b41*x3 + x150 =G= 0;
e5.. (-2.00666666666667*x4*b42) - 2.00666666666667*b42*x4 + x151 =G= 0;
e6.. (-2.38*x5*b43) - 2.38*b43*x5 + x152 =G= 0;
e7.. (-2.38*x6*b44) - 2.38*b44*x6 + x153 =G= 0;
e8.. -x31*x7*b45 + x154 =G= 0;
e9.. -x31*x8*b46 + x155 =G= 0;
e10.. -x32*x9*b47 + x156 =G= 0;
e11.. -x32*x10*b48 + x157 =G= 0;
e12.. -x33*x11*b49 + x158 =G= 0;
e13.. -x33*x12*b50 + x159 =G= 0;
e14.. (-3.29666666666667*x13*b51) - 3.29666666666667*b51*x13 + x160 =G= 0;
e15.. (-3.29666666666667*x14*b52) - 3.29666666666667*b52*x14 + x161 =G= 0;
e16.. -x34*x15*b53 + x162 =G= 0;
e17.. -x34*x16*b54 + x163 =G= 0;
e18.. -x35*x17*b55 + x164 =G= 0;
e19.. -x35*x18*b56 + x165 =G= 0;
e20.. -x36*x19*b57 + x166 =G= 0;
e21.. -x36*x20*b58 + x167 =G= 0;
e22.. -x37*x21*b59 + x168 =G= 0;
e23.. -x37*x22*b60 + x169 =G= 0;
e24.. (-40.4533333333333*x23*b61) - 40.4533333333333*b61*x23 + x170 =G= 0;
e25.. (-40.4533333333333*x24*b62) - 40.4533333333333*b62*x24 + x171 =G= 0;
e26.. (-13.0733333333333*x25*b63) - 13.0733333333333*b63*x25 + x172 =G= 0;
e27.. (-13.0733333333333*x26*b64) - 13.0733333333333*b64*x26 + x173 =G= 0;
e28.. (-19*x27*b65) - 19*b65*x27 + x174 =G= 0;
e29.. (-19*x28*b66) - 19*b66*x28 + x175 =G= 0;
e30.. -x38*x29*b67 + x176 =G= 0;
e31.. -x38*x30*b68 + x177 =G= 0;
e32.. b39 + b40 =E= 1;
e33.. b41 + b42 =E= 1;
e34.. b43 + b44 =E= 1;
e35.. b45 + b46 =E= 1;
e36.. b47 + b48 =E= 1;
e37.. b49 + b50 =E= 1;
e38.. b51 + b52 =E= 1;
e39.. b53 + b54 =E= 1;
e40.. b55 + b56 =E= 1;
e41.. b57 + b58 =E= 1;
e42.. b59 + b60 =E= 1;
e43.. b61 + b62 =E= 1;
e44.. b63 + b64 =E= 1;
e45.. b65 + b66 =E= 1;
e46.. b67 + b68 =E= 1;
e47.. 2.02*b39 + 4.01333333333333*b41 + 4.76*b43 + 5.96*b45
+ 42.0933333333333*b47 + 99.28*b49 + 6.59333333333333*b51
+ 61.8666666666667*b53 + 56.2866666666667*b55 + 41.5*b57
+ 62.4933333333333*b59 + 80.9066666666667*b61 + 26.1466666666667*b63
+ 38*b65 + 62.24*b67 =L= 302.08;
e48.. 2.02*b40 + 4.01333333333333*b42 + 4.76*b44 + 5.96*b46
+ 42.0933333333333*b48 + 99.28*b50 + 6.59333333333333*b52
+ 61.8666666666667*b54 + 56.2866666666667*b56 + 41.5*b58
+ 62.4933333333333*b60 + 80.9066666666667*b62 + 26.1466666666667*b64
+ 38*b66 + 62.24*b68 =L= 302.08;
e49.. x84 + x88 =G= 0.29424122;
e50.. x85 + x89 =G= 0.29424122;
e51.. x84 + x90 =G= 0.29760193;
e52.. x85 + x91 =G= 0.29760193;
e53.. x84 + x92 =G= 0.35149534;
e54.. x85 + x93 =G= 0.35149534;
e55.. x84 + x94 =G= 0.30458283;
e56.. x85 + x95 =G= 0.30458283;
e57.. x84 + x96 =G= 0.29951066;
e58.. x85 + x97 =G= 0.29951066;
e59.. x84 + x98 =G= 0.30694357;
e60.. x85 + x99 =G= 0.30694357;
e61.. x84 + x100 =G= 0.33520661;
e62.. x85 + x101 =G= 0.33520661;
e63.. x84 + x102 =G= 0.3400071;
e64.. x85 + x103 =G= 0.3400071;
e65.. x84 + x104 =G= 0.35227087;
e66.. x85 + x105 =G= 0.35227087;
e67.. x84 + x106 =G= 0.34225726;
e68.. x85 + x107 =G= 0.34225726;
e69.. x84 + x108 =G= 0.32776566;
e70.. x85 + x109 =G= 0.32776566;
e71.. x84 + x110 =G= 0.30438256;
e72.. x85 + x111 =G= 0.30438256;
e73.. x84 + x112 =G= 0.28538336;
e74.. x85 + x113 =G= 0.28538336;
e75.. x84 + x114 =G= 0.27950575;
e76.. x85 + x115 =G= 0.27950575;
e77.. - x84 + x88 =G= -0.29424122;
e78.. - x85 + x89 =G= -0.29424122;
e79.. - x84 + x90 =G= -0.29760193;
e80.. - x85 + x91 =G= -0.29760193;
e81.. - x84 + x92 =G= -0.35149534;
e82.. - x85 + x93 =G= -0.35149534;
e83.. - x84 + x94 =G= -0.30458283;
e84.. - x85 + x95 =G= -0.30458283;
e85.. - x84 + x96 =G= -0.29951066;
e86.. - x85 + x97 =G= -0.29951066;
e87.. - x84 + x98 =G= -0.30694357;
e88.. - x85 + x99 =G= -0.30694357;
e89.. - x84 + x100 =G= -0.33520661;
e90.. - x85 + x101 =G= -0.33520661;
e91.. - x84 + x102 =G= -0.3400071;
e92.. - x85 + x103 =G= -0.3400071;
e93.. - x84 + x106 =G= -0.34225726;
e94.. - x85 + x107 =G= -0.34225726;
e95.. - x84 + x108 =G= -0.32776566;
e96.. - x85 + x109 =G= -0.32776566;
e97.. - x84 + x110 =G= -0.30438256;
e98.. - x85 + x111 =G= -0.30438256;
e99.. - x84 + x112 =G= -0.28538336;
e100.. - x85 + x113 =G= -0.28538336;
e101.. - x84 + x114 =G= -0.27950575;
e102.. - x85 + x115 =G= -0.27950575;
e103.. - x84 + x116 =G= -0.25788969;
e104.. - x85 + x117 =G= -0.25788969;
e105.. x86 + x120 =G= -0.9536939;
e106.. x87 + x121 =G= -0.9536939;
e107.. x86 + x122 =G= -0.9004898;
e108.. x87 + x123 =G= -0.9004898;
e109.. x86 + x124 =G= -0.9114032;
e110.. x87 + x125 =G= -0.9114032;
e111.. x86 + x126 =G= -0.90071532;
e112.. x87 + x127 =G= -0.90071532;
e113.. x86 + x128 =G= -0.88043054;
e114.. x87 + x129 =G= -0.88043054;
e115.. x86 + x130 =G= -0.8680249;
e116.. x87 + x131 =G= -0.8680249;
e117.. x86 + x132 =G= -0.81034814;
e118.. x87 + x133 =G= -0.81034814;
e119.. x86 + x134 =G= -0.80843127;
e120.. x87 + x135 =G= -0.80843127;
e121.. x86 + x136 =G= -0.7794471;
e122.. x87 + x137 =G= -0.7794471;
e123.. x86 + x138 =G= -0.79930922;
e124.. x87 + x139 =G= -0.79930922;
e125.. x86 + x140 =G= -0.84280733;
e126.. x87 + x141 =G= -0.84280733;
e127.. x86 + x142 =G= -0.81379236;
e128.. x87 + x143 =G= -0.81379236;
e129.. x86 + x144 =G= -0.82457178;
e130.. x87 + x145 =G= -0.82457178;
e131.. x86 + x146 =G= -0.80226439;
e132.. x87 + x147 =G= -0.80226439;
e133.. - x86 + x118 =G= 0.98493628;
e134.. - x87 + x119 =G= 0.98493628;
e135.. - x86 + x120 =G= 0.9536939;
e136.. - x87 + x121 =G= 0.9536939;
e137.. - x86 + x122 =G= 0.9004898;
e138.. - x87 + x123 =G= 0.9004898;
e139.. - x86 + x124 =G= 0.9114032;
e140.. - x87 + x125 =G= 0.9114032;
e141.. - x86 + x126 =G= 0.90071532;
e142.. - x87 + x127 =G= 0.90071532;
e143.. - x86 + x128 =G= 0.88043054;
e144.. - x87 + x129 =G= 0.88043054;
e145.. - x86 + x130 =G= 0.8680249;
e146.. - x87 + x131 =G= 0.8680249;
e147.. - x86 + x132 =G= 0.81034814;
e148.. - x87 + x133 =G= 0.81034814;
e149.. - x86 + x134 =G= 0.80843127;
e150.. - x87 + x135 =G= 0.80843127;
e151.. - x86 + x138 =G= 0.79930922;
e152.. - x87 + x139 =G= 0.79930922;
e153.. - x86 + x140 =G= 0.84280733;
e154.. - x87 + x141 =G= 0.84280733;
e155.. - x86 + x142 =G= 0.81379236;
e156.. - x87 + x143 =G= 0.81379236;
e157.. - x86 + x144 =G= 0.82457178;
e158.. - x87 + x145 =G= 0.82457178;
e159.. - x86 + x146 =G= 0.80226439;
e160.. - x87 + x147 =G= 0.80226439;
e161.. x1 - x88 - x118 =E= 0;
e162.. x2 - x89 - x119 =E= 0;
e163.. x3 - x90 - x120 =E= 0;
e164.. x4 - x91 - x121 =E= 0;
e165.. x5 - x92 - x122 =E= 0;
e166.. x6 - x93 - x123 =E= 0;
e167.. x7 - x94 - x124 =E= 0;
e168.. x8 - x95 - x125 =E= 0;
e169.. x9 - x96 - x126 =E= 0;
e170.. x10 - x97 - x127 =E= 0;
e171.. x11 - x98 - x128 =E= 0;
e172.. x12 - x99 - x129 =E= 0;
e173.. x13 - x100 - x130 =E= 0;
e174.. x14 - x101 - x131 =E= 0;
e175.. x15 - x102 - x132 =E= 0;
e176.. x16 - x103 - x133 =E= 0;
e177.. x17 - x104 - x134 =E= 0;
e178.. x18 - x105 - x135 =E= 0;
e179.. x19 - x106 - x136 =E= 0;
e180.. x20 - x107 - x137 =E= 0;
e181.. x21 - x108 - x138 =E= 0;
e182.. x22 - x109 - x139 =E= 0;
e183.. x23 - x110 - x140 =E= 0;
e184.. x24 - x111 - x141 =E= 0;
e185.. x25 - x112 - x142 =E= 0;
e186.. x26 - x113 - x143 =E= 0;
e187.. x27 - x114 - x144 =E= 0;
e188.. x28 - x115 - x145 =E= 0;
e189.. x29 - x116 - x146 =E= 0;
e190.. x30 - x117 - x147 =E= 0;
e191.. b179 + b180 =G= 1;
e192.. b178 + b180 =G= 1;
e193.. b178 + b179 =G= 1;
e194.. b180 + b182 =G= 1;
e195.. b180 + b181 =G= 1;
e196.. b179 + b182 =G= 1;
e197.. b179 + b181 =G= 1;
e198.. b178 + b182 =G= 1;
e199.. b178 + b181 =G= 1;
e200.. x31 - 5.96*b178 =G= 0;
e201.. x32 - 42.0933333333333*b179 =G= 0;
e202.. x33 - 99.28*b180 =G= 0;
e203.. x34 - 61.8666666666667*b181 =G= 0;
e204.. x35 - 56.2866666666667*b182 =G= 0;
e205.. x36 - 39.6133333333333*b183 =G= 0;
e206.. x36 - 41.5*b184 =G= 0;
e207.. x37 - 62.4933333333333*b185 =G= 0;
e208.. x38 - 62.24*b186 =G= 0;
e209.. - x69 + x148 =L= 0;
e210.. - x69 + x149 =L= 0;
e211.. - x70 + x150 =L= 0;
e212.. - x70 + x151 =L= 0;
e213.. - x71 + x152 =L= 0;
e214.. - x71 + x153 =L= 0;
e215.. - x72 + x154 =L= 0;
e216.. - x72 + x155 =L= 0;
e217.. - x73 + x156 =L= 0;
e218.. - x73 + x157 =L= 0;
e219.. - x74 + x158 =L= 0;
e220.. - x74 + x159 =L= 0;
e221.. - x75 + x160 =L= 0;
e222.. - x75 + x161 =L= 0;
e223.. - x76 + x162 =L= 0;
e224.. - x76 + x163 =L= 0;
e225.. - x77 + x164 =L= 0;
e226.. - x77 + x165 =L= 0;
e227.. - x78 + x166 =L= 0;
e228.. - x78 + x167 =L= 0;
e229.. - x79 + x168 =L= 0;
e230.. - x79 + x169 =L= 0;
e231.. - x80 + x170 =L= 0;
e232.. - x80 + x171 =L= 0;
e233.. - x81 + x172 =L= 0;
e234.. - x81 + x173 =L= 0;
e235.. - x82 + x174 =L= 0;
e236.. - x82 + x175 =L= 0;
e237.. - x83 + x176 =L= 0;
e238.. - x83 + x177 =L= 0;
e239.. b183 - b184 =G= 0;
e240.. x86 - x87 =G= 0;
* set non-default bounds
x1.up = 0.26351883;
x2.up = 0.26351883;
x3.up = 0.22891574;
x4.up = 0.22891574;
x5.up = 0.21464835;
x6.up = 0.21464835;
x7.up = 0.17964414;
x8.up = 0.17964414;
x9.up = 0.17402843;
x10.up = 0.17402843;
x11.up = 0.15355962;
x12.up = 0.15355962;
x13.up = 0.1942283;
x14.up = 0.1942283;
x15.up = 0.25670555;
x16.up = 0.25670555;
x17.up = 0.27088619;
x18.up = 0.27088619;
x19.up = 0.28985675;
x20.up = 0.28985675;
x21.up = 0.25550303;
x22.up = 0.25550303;
x23.up = 0.19001726;
x24.up = 0.19001726;
x25.up = 0.23803143;
x26.up = 0.23803143;
x27.up = 0.23312962;
x28.up = 0.23312962;
x29.up = 0.27705307;
x30.up = 0.27705307;
x31.lo = 5.68; x31.up = 5.96;
x32.lo = 40.18; x32.up = 42.0933333333333;
x33.lo = 94.7666666666667; x33.up = 99.28;
x34.lo = 59.0533333333333; x34.up = 61.8666666666667;
x35.lo = 53.7333333333333; x35.up = 56.2866666666667;
x36.lo = 37.7266666666667; x36.up = 41.5;
x37.lo = 59.6466666666667; x37.up = 62.4933333333333;
x38.lo = 59.2733333333333; x38.up = 62.24;
x69.up = 0.5323080366;
x70.up = 0.918715169866666;
x71.up = 1.021726146;
x72.up = 1.0706790744;
x73.up = 7.32543671346667;
x74.up = 15.2453990736;
x75.up = 1.28061192466667;
x76.up = 15.8815166933333;
x77.up = 15.2472806811333;
x78.up = 12.029055125;
x79.up = 15.9672360214667;
x80.up = 15.3736631157333;
x81.up = 6.2237284564;
x82.up = 8.85892556;
x83.up = 17.2437830768;
x84.lo = 0.25788969; x84.up = 0.35227087;
x85.lo = 0.25788969; x85.up = 0.35227087;
x86.lo = -0.98493628; x86.up = -0.7794471;
x87.lo = -0.98493628; x87.up = -0.7794471;
x88.up = 0.0580296499999999;
x89.up = 0.0580296499999999;
x90.up = 0.0546689399999999;
x91.up = 0.0546689399999999;
x92.up = 0.09360565;
x93.up = 0.09360565;
x94.up = 0.0476880399999999;
x95.up = 0.0476880399999999;
x96.up = 0.05276021;
x97.up = 0.05276021;
x98.up = 0.04905388;
x99.up = 0.04905388;
x100.up = 0.07731692;
x101.up = 0.07731692;
x102.up = 0.08211741;
x103.up = 0.08211741;
x104.up = 0.09438118;
x105.up = 0.09438118;
x106.up = 0.08436757;
x107.up = 0.08436757;
x108.up = 0.06987597;
x109.up = 0.06987597;
x110.up = 0.04788831;
x111.up = 0.04788831;
x112.up = 0.0668875099999999;
x113.up = 0.0668875099999999;
x114.up = 0.07276512;
x115.up = 0.07276512;
x116.up = 0.09438118;
x117.up = 0.09438118;
x118.up = 0.20548918;
x119.up = 0.20548918;
x120.up = 0.1742468;
x121.up = 0.1742468;
x122.up = 0.1210427;
x123.up = 0.1210427;
x124.up = 0.1319561;
x125.up = 0.1319561;
x126.up = 0.12126822;
x127.up = 0.12126822;
x128.up = 0.10450574;
x129.up = 0.10450574;
x130.up = 0.11691138;
x131.up = 0.11691138;
x132.up = 0.17458814;
x133.up = 0.17458814;
x134.up = 0.17650501;
x135.up = 0.17650501;
x136.up = 0.20548918;
x137.up = 0.20548918;
x138.up = 0.18562706;
x139.up = 0.18562706;
x140.up = 0.14212895;
x141.up = 0.14212895;
x142.up = 0.17114392;
x143.up = 0.17114392;
x144.up = 0.1603645;
x145.up = 0.1603645;
x146.up = 0.18267189;
x147.up = 0.18267189;
x148.up = 0.5323080366;
x149.up = 0.5323080366;
x150.up = 0.918715169866666;
x151.up = 0.918715169866666;
x152.up = 1.021726146;
x153.up = 1.021726146;
x154.up = 1.0706790744;
x155.up = 1.0706790744;
x156.up = 7.32543671346667;
x157.up = 7.32543671346667;
x158.up = 15.2453990736;
x159.up = 15.2453990736;
x160.up = 1.28061192466667;
x161.up = 1.28061192466667;
x162.up = 15.8815166933333;
x163.up = 15.8815166933333;
x164.up = 15.2472806811333;
x165.up = 15.2472806811333;
x166.up = 12.029055125;
x167.up = 12.029055125;
x168.up = 15.9672360214667;
x169.up = 15.9672360214667;
x170.up = 15.3736631157333;
x171.up = 15.3736631157333;
x172.up = 6.2237284564;
x173.up = 6.2237284564;
x174.up = 8.85892556;
x175.up = 8.85892556;
x176.up = 17.2437830768;
x177.up = 17.2437830768;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

