MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance slay09m
Determine the optimal placement of a set of units with fixed width and length such that the Euclidean distance between their center point and a predefined "safety point" is minimized.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -27229.90900000 (ALPHAECP) 107805.75080000 (ANTIGONE) 107805.75280000 (BARON) 107805.75000000 (BONMIN) 107805.75110000 (COUENNE) 107805.75290000 (CPLEX) 107805.75290000 (GUROBI) 107805.75290000 (LINDO) 107805.75290000 (SCIP) 107805.75290000 (SHOT) |
| Referencesⓘ | Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006. |
| Sourceⓘ | SLay09M.gms from CMU-IBM MINLP solver project page |
| Applicationⓘ | Layout |
| Added to libraryⓘ | 28 Sep 2013 |
| Problem typeⓘ | MBQP |
| #Variablesⓘ | 234 |
| #Binary Variablesⓘ | 144 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 18 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 90 |
| #Nonlinear Nonzeros in Objectiveⓘ | 18 |
| #Constraintsⓘ | 324 |
| #Linear Constraintsⓘ | 324 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 1008 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 18 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 18 |
| #Blocks in Hessian of Lagrangianⓘ | 18 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 4.0000e+02 |
| Infeasibility of initial pointⓘ | 3 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 325 37 144 144 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 235 91 144 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 1099 1081 18 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
,b156,b157,b158,b159,b160,b161,b162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233
,x234,objvar;
Positive Variables x163,x164,x165,x166,x167,x168,x169,x170,x171,x172,x173
,x174,x175,x176,x177,x178,x179,x180,x181,x182,x183,x184,x185,x186
,x187,x188,x189,x190,x191,x192,x193,x194,x195,x196,x197,x198,x199
,x200,x201,x202,x203,x204,x205,x206,x207,x208,x209,x210,x211,x212
,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222,x223,x224,x225
,x226,x227,x228,x229,x230,x231,x232,x233,x234;
Binary Variables b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33
,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50
,b51,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67
,b68,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84
,b85,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100
,b101,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113
,b114,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126
,b127,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139
,b140,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152
,b153,b154,b155,b156,b157,b158,b159,b160,b161,b162;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259
,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272
,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282,e283,e284,e285
,e286,e287,e288,e289,e290,e291,e292,e293,e294,e295,e296,e297,e298
,e299,e300,e301,e302,e303,e304,e305,e306,e307,e308,e309,e310,e311
,e312,e313,e314,e315,e316,e317,e318,e319,e320,e321,e322,e323,e324
,e325;
e1.. -(150*(sqr((-4) + x1) + sqr((-10) + x10)) + 390*(sqr((-10) + x2) + sqr((-
15) + x11)) + 240*(sqr((-7) + x3) + sqr((-9) + x12)) + 70*(sqr((-3) + x4)
+ sqr((-3) + x13)) + 165*(sqr((-20) + x5) + sqr((-17) + x14)) + 100*(sqr(
(-18) + x6) + sqr((-8) + x15)) + 200*(sqr((-30) + x7) + sqr((-20) + x16))
+ 400*(sqr((-24) + x8) + sqr((-10) + x17)) + 330*(sqr((-22) + x9) + sqr((
-6) + x18))) - 300*x163 - 240*x164 - 210*x165 - 140*x166 - 300*x167
- 250*x168 - 300*x169 - 210*x170 - 100*x171 - 150*x172 - 220*x173
- 200*x174 - 300*x175 - 290*x176 - 400*x177 - 120*x178 - 300*x179
- 150*x180 - 150*x181 - 100*x182 - 290*x183 - 100*x184 - 120*x185
- 180*x186 - 220*x187 - 110*x188 - 130*x189 - 190*x190 - 110*x191
- 160*x192 - 220*x193 - 140*x194 - 120*x195 - 260*x196 - 220*x197
- 140*x198 - 300*x199 - 240*x200 - 210*x201 - 140*x202 - 300*x203
- 250*x204 - 300*x205 - 210*x206 - 100*x207 - 150*x208 - 220*x209
- 200*x210 - 300*x211 - 290*x212 - 400*x213 - 120*x214 - 300*x215
- 150*x216 - 150*x217 - 100*x218 - 290*x219 - 100*x220 - 120*x221
- 180*x222 - 220*x223 - 110*x224 - 130*x225 - 190*x226 - 110*x227
- 160*x228 - 220*x229 - 140*x230 - 120*x231 - 260*x232 - 220*x233
- 140*x234 + objvar =E= 0;
e2.. - x1 + x2 + x163 =G= 0;
e3.. - x1 + x3 + x164 =G= 0;
e4.. - x1 + x4 + x165 =G= 0;
e5.. - x1 + x5 + x166 =G= 0;
e6.. - x1 + x6 + x167 =G= 0;
e7.. - x1 + x7 + x168 =G= 0;
e8.. - x1 + x8 + x169 =G= 0;
e9.. - x1 + x9 + x170 =G= 0;
e10.. - x2 + x3 + x171 =G= 0;
e11.. - x2 + x4 + x172 =G= 0;
e12.. - x2 + x5 + x173 =G= 0;
e13.. - x2 + x6 + x174 =G= 0;
e14.. - x2 + x7 + x175 =G= 0;
e15.. - x2 + x8 + x176 =G= 0;
e16.. - x2 + x9 + x177 =G= 0;
e17.. - x3 + x4 + x178 =G= 0;
e18.. - x3 + x5 + x179 =G= 0;
e19.. - x3 + x6 + x180 =G= 0;
e20.. - x3 + x7 + x181 =G= 0;
e21.. - x3 + x8 + x182 =G= 0;
e22.. - x3 + x9 + x183 =G= 0;
e23.. - x4 + x5 + x184 =G= 0;
e24.. - x4 + x6 + x185 =G= 0;
e25.. - x4 + x7 + x186 =G= 0;
e26.. - x4 + x8 + x187 =G= 0;
e27.. - x4 + x9 + x188 =G= 0;
e28.. - x5 + x6 + x189 =G= 0;
e29.. - x5 + x7 + x190 =G= 0;
e30.. - x5 + x8 + x191 =G= 0;
e31.. - x5 + x9 + x192 =G= 0;
e32.. - x6 + x7 + x193 =G= 0;
e33.. - x6 + x8 + x194 =G= 0;
e34.. - x6 + x9 + x195 =G= 0;
e35.. - x7 + x8 + x196 =G= 0;
e36.. - x7 + x9 + x197 =G= 0;
e37.. - x8 + x9 + x198 =G= 0;
e38.. x1 - x2 + x163 =G= 0;
e39.. x1 - x3 + x164 =G= 0;
e40.. x1 - x4 + x165 =G= 0;
e41.. x1 - x5 + x166 =G= 0;
e42.. x1 - x6 + x167 =G= 0;
e43.. x1 - x7 + x168 =G= 0;
e44.. x1 - x8 + x169 =G= 0;
e45.. x1 - x9 + x170 =G= 0;
e46.. x2 - x3 + x171 =G= 0;
e47.. x2 - x4 + x172 =G= 0;
e48.. x2 - x5 + x173 =G= 0;
e49.. x2 - x6 + x174 =G= 0;
e50.. x2 - x7 + x175 =G= 0;
e51.. x2 - x8 + x176 =G= 0;
e52.. x2 - x9 + x177 =G= 0;
e53.. x3 - x4 + x178 =G= 0;
e54.. x3 - x5 + x179 =G= 0;
e55.. x3 - x6 + x180 =G= 0;
e56.. x3 - x7 + x181 =G= 0;
e57.. x3 - x8 + x182 =G= 0;
e58.. x3 - x9 + x183 =G= 0;
e59.. x4 - x5 + x184 =G= 0;
e60.. x4 - x6 + x185 =G= 0;
e61.. x4 - x7 + x186 =G= 0;
e62.. x4 - x8 + x187 =G= 0;
e63.. x4 - x9 + x188 =G= 0;
e64.. x5 - x6 + x189 =G= 0;
e65.. x5 - x7 + x190 =G= 0;
e66.. x5 - x8 + x191 =G= 0;
e67.. x5 - x9 + x192 =G= 0;
e68.. x6 - x7 + x193 =G= 0;
e69.. x6 - x8 + x194 =G= 0;
e70.. x6 - x9 + x195 =G= 0;
e71.. x7 - x8 + x196 =G= 0;
e72.. x7 - x9 + x197 =G= 0;
e73.. x8 - x9 + x198 =G= 0;
e74.. - x10 + x11 + x199 =G= 0;
e75.. - x10 + x12 + x200 =G= 0;
e76.. - x10 + x13 + x201 =G= 0;
e77.. - x10 + x14 + x202 =G= 0;
e78.. - x10 + x15 + x203 =G= 0;
e79.. - x10 + x16 + x204 =G= 0;
e80.. - x10 + x17 + x205 =G= 0;
e81.. - x10 + x18 + x206 =G= 0;
e82.. - x11 + x12 + x207 =G= 0;
e83.. - x11 + x13 + x208 =G= 0;
e84.. - x11 + x14 + x209 =G= 0;
e85.. - x11 + x15 + x210 =G= 0;
e86.. - x11 + x16 + x211 =G= 0;
e87.. - x11 + x17 + x212 =G= 0;
e88.. - x11 + x18 + x213 =G= 0;
e89.. - x12 + x13 + x214 =G= 0;
e90.. - x12 + x14 + x215 =G= 0;
e91.. - x12 + x15 + x216 =G= 0;
e92.. - x12 + x16 + x217 =G= 0;
e93.. - x12 + x17 + x218 =G= 0;
e94.. - x12 + x18 + x219 =G= 0;
e95.. - x13 + x14 + x220 =G= 0;
e96.. - x13 + x15 + x221 =G= 0;
e97.. - x13 + x16 + x222 =G= 0;
e98.. - x13 + x17 + x223 =G= 0;
e99.. - x13 + x18 + x224 =G= 0;
e100.. - x14 + x15 + x225 =G= 0;
e101.. - x14 + x16 + x226 =G= 0;
e102.. - x14 + x17 + x227 =G= 0;
e103.. - x14 + x18 + x228 =G= 0;
e104.. - x15 + x16 + x229 =G= 0;
e105.. - x15 + x17 + x230 =G= 0;
e106.. - x15 + x18 + x231 =G= 0;
e107.. - x16 + x17 + x232 =G= 0;
e108.. - x16 + x18 + x233 =G= 0;
e109.. - x17 + x18 + x234 =G= 0;
e110.. x10 - x11 + x199 =G= 0;
e111.. x10 - x12 + x200 =G= 0;
e112.. x10 - x13 + x201 =G= 0;
e113.. x10 - x14 + x202 =G= 0;
e114.. x10 - x15 + x203 =G= 0;
e115.. x10 - x16 + x204 =G= 0;
e116.. x10 - x17 + x205 =G= 0;
e117.. x10 - x18 + x206 =G= 0;
e118.. x11 - x12 + x207 =G= 0;
e119.. x11 - x13 + x208 =G= 0;
e120.. x11 - x14 + x209 =G= 0;
e121.. x11 - x15 + x210 =G= 0;
e122.. x11 - x16 + x211 =G= 0;
e123.. x11 - x17 + x212 =G= 0;
e124.. x11 - x18 + x213 =G= 0;
e125.. x12 - x13 + x214 =G= 0;
e126.. x12 - x14 + x215 =G= 0;
e127.. x12 - x15 + x216 =G= 0;
e128.. x12 - x16 + x217 =G= 0;
e129.. x12 - x17 + x218 =G= 0;
e130.. x12 - x18 + x219 =G= 0;
e131.. x13 - x14 + x220 =G= 0;
e132.. x13 - x15 + x221 =G= 0;
e133.. x13 - x16 + x222 =G= 0;
e134.. x13 - x17 + x223 =G= 0;
e135.. x13 - x18 + x224 =G= 0;
e136.. x14 - x15 + x225 =G= 0;
e137.. x14 - x16 + x226 =G= 0;
e138.. x14 - x17 + x227 =G= 0;
e139.. x14 - x18 + x228 =G= 0;
e140.. x15 - x16 + x229 =G= 0;
e141.. x15 - x17 + x230 =G= 0;
e142.. x15 - x18 + x231 =G= 0;
e143.. x16 - x17 + x232 =G= 0;
e144.. x16 - x18 + x233 =G= 0;
e145.. x17 - x18 + x234 =G= 0;
e146.. x1 - x2 + 40*b19 =L= 34;
e147.. x1 - x3 + 40*b20 =L= 36;
e148.. x1 - x4 + 40*b21 =L= 36.5;
e149.. x1 - x5 + 40*b22 =L= 35.5;
e150.. x1 - x6 + 40*b23 =L= 35;
e151.. x1 - x7 + 40*b24 =L= 33.5;
e152.. x1 - x8 + 40*b25 =L= 35.5;
e153.. x1 - x9 + 40*b26 =L= 36.5;
e154.. x2 - x3 + 40*b27 =L= 35;
e155.. x2 - x4 + 40*b28 =L= 35.5;
e156.. x2 - x5 + 40*b29 =L= 34.5;
e157.. x2 - x6 + 40*b30 =L= 34;
e158.. x2 - x7 + 40*b31 =L= 32.5;
e159.. x2 - x8 + 40*b32 =L= 34.5;
e160.. x2 - x9 + 40*b33 =L= 35.5;
e161.. x3 - x4 + 40*b34 =L= 37.5;
e162.. x3 - x5 + 40*b35 =L= 36.5;
e163.. x3 - x6 + 40*b36 =L= 36;
e164.. x3 - x7 + 40*b37 =L= 34.5;
e165.. x3 - x8 + 40*b38 =L= 36.5;
e166.. x3 - x9 + 40*b39 =L= 37.5;
e167.. x4 - x5 + 40*b40 =L= 37;
e168.. x4 - x6 + 40*b41 =L= 36.5;
e169.. x4 - x7 + 40*b42 =L= 35;
e170.. x4 - x8 + 40*b43 =L= 37;
e171.. x4 - x9 + 40*b44 =L= 38;
e172.. x5 - x6 + 40*b45 =L= 35.5;
e173.. x5 - x7 + 40*b46 =L= 34;
e174.. x5 - x8 + 40*b47 =L= 36;
e175.. x5 - x9 + 40*b48 =L= 37;
e176.. x6 - x7 + 40*b49 =L= 33.5;
e177.. x6 - x8 + 40*b50 =L= 35.5;
e178.. x6 - x9 + 40*b51 =L= 36.5;
e179.. x7 - x8 + 40*b52 =L= 34;
e180.. x7 - x9 + 40*b53 =L= 35;
e181.. x8 - x9 + 40*b54 =L= 37;
e182.. - x1 + x2 + 40*b55 =L= 34;
e183.. - x1 + x3 + 40*b56 =L= 36;
e184.. - x1 + x4 + 40*b57 =L= 36.5;
e185.. - x1 + x5 + 40*b58 =L= 35.5;
e186.. - x1 + x6 + 40*b59 =L= 35;
e187.. - x1 + x7 + 40*b60 =L= 33.5;
e188.. - x1 + x8 + 40*b61 =L= 35.5;
e189.. - x1 + x9 + 40*b62 =L= 36.5;
e190.. - x2 + x3 + 40*b63 =L= 35;
e191.. - x2 + x4 + 40*b64 =L= 35.5;
e192.. - x2 + x5 + 40*b65 =L= 34.5;
e193.. - x2 + x6 + 40*b66 =L= 34;
e194.. - x2 + x7 + 40*b67 =L= 32.5;
e195.. - x2 + x8 + 40*b68 =L= 34.5;
e196.. - x2 + x9 + 40*b69 =L= 35.5;
e197.. - x3 + x4 + 40*b70 =L= 37.5;
e198.. - x3 + x5 + 40*b71 =L= 36.5;
e199.. - x3 + x6 + 40*b72 =L= 36;
e200.. - x3 + x7 + 40*b73 =L= 34.5;
e201.. - x3 + x8 + 40*b74 =L= 36.5;
e202.. - x3 + x9 + 40*b75 =L= 37.5;
e203.. - x4 + x5 + 40*b76 =L= 37;
e204.. - x4 + x6 + 40*b77 =L= 36.5;
e205.. - x4 + x7 + 40*b78 =L= 35;
e206.. - x4 + x8 + 40*b79 =L= 37;
e207.. - x4 + x9 + 40*b80 =L= 38;
e208.. - x5 + x6 + 40*b81 =L= 35.5;
e209.. - x5 + x7 + 40*b82 =L= 34;
e210.. - x5 + x8 + 40*b83 =L= 36;
e211.. - x5 + x9 + 40*b84 =L= 37;
e212.. - x6 + x7 + 40*b85 =L= 33.5;
e213.. - x6 + x8 + 40*b86 =L= 35.5;
e214.. - x6 + x9 + 40*b87 =L= 36.5;
e215.. - x7 + x8 + 40*b88 =L= 34;
e216.. - x7 + x9 + 40*b89 =L= 35;
e217.. - x8 + x9 + 40*b90 =L= 37;
e218.. x10 - x11 + 40*b91 =L= 34.5;
e219.. x10 - x12 + 40*b92 =L= 35.5;
e220.. x10 - x13 + 40*b93 =L= 35.5;
e221.. x10 - x14 + 40*b94 =L= 35;
e222.. x10 - x15 + 40*b95 =L= 36;
e223.. x10 - x16 + 40*b96 =L= 34;
e224.. x10 - x17 + 40*b97 =L= 34;
e225.. x10 - x18 + 40*b98 =L= 34.5;
e226.. x11 - x12 + 40*b99 =L= 36;
e227.. x11 - x13 + 40*b100 =L= 36;
e228.. x11 - x14 + 40*b101 =L= 35.5;
e229.. x11 - x15 + 40*b102 =L= 36.5;
e230.. x11 - x16 + 40*b103 =L= 34.5;
e231.. x11 - x17 + 40*b104 =L= 34.5;
e232.. x11 - x18 + 40*b105 =L= 35;
e233.. x12 - x13 + 40*b106 =L= 37;
e234.. x12 - x14 + 40*b107 =L= 36.5;
e235.. x12 - x15 + 40*b108 =L= 37.5;
e236.. x12 - x16 + 40*b109 =L= 35.5;
e237.. x12 - x17 + 40*b110 =L= 35.5;
e238.. x12 - x18 + 40*b111 =L= 36;
e239.. x13 - x14 + 40*b112 =L= 36.5;
e240.. x13 - x15 + 40*b113 =L= 37.5;
e241.. x13 - x16 + 40*b114 =L= 35.5;
e242.. x13 - x17 + 40*b115 =L= 35.5;
e243.. x13 - x18 + 40*b116 =L= 36;
e244.. x14 - x15 + 40*b117 =L= 37;
e245.. x14 - x16 + 40*b118 =L= 35;
e246.. x14 - x17 + 40*b119 =L= 35;
e247.. x14 - x18 + 40*b120 =L= 35.5;
e248.. x15 - x16 + 40*b121 =L= 36;
e249.. x15 - x17 + 40*b122 =L= 36;
e250.. x15 - x18 + 40*b123 =L= 36.5;
e251.. x16 - x17 + 40*b124 =L= 34;
e252.. x16 - x18 + 40*b125 =L= 34.5;
e253.. x17 - x18 + 40*b126 =L= 34.5;
e254.. - x10 + x11 + 40*b127 =L= 34.5;
e255.. - x10 + x12 + 40*b128 =L= 35.5;
e256.. - x10 + x13 + 40*b129 =L= 35.5;
e257.. - x10 + x14 + 40*b130 =L= 35;
e258.. - x10 + x15 + 40*b131 =L= 36;
e259.. - x10 + x16 + 40*b132 =L= 34;
e260.. - x10 + x17 + 40*b133 =L= 34;
e261.. - x10 + x18 + 40*b134 =L= 34.5;
e262.. - x11 + x12 + 40*b135 =L= 36;
e263.. - x11 + x13 + 40*b136 =L= 36;
e264.. - x11 + x14 + 40*b137 =L= 35.5;
e265.. - x11 + x15 + 40*b138 =L= 36.5;
e266.. - x11 + x16 + 40*b139 =L= 34.5;
e267.. - x11 + x17 + 40*b140 =L= 34.5;
e268.. - x11 + x18 + 40*b141 =L= 35;
e269.. - x12 + x13 + 40*b142 =L= 37;
e270.. - x12 + x14 + 40*b143 =L= 36.5;
e271.. - x12 + x15 + 40*b144 =L= 37.5;
e272.. - x12 + x16 + 40*b145 =L= 35.5;
e273.. - x12 + x17 + 40*b146 =L= 35.5;
e274.. - x12 + x18 + 40*b147 =L= 36;
e275.. - x13 + x14 + 40*b148 =L= 36.5;
e276.. - x13 + x15 + 40*b149 =L= 37.5;
e277.. - x13 + x16 + 40*b150 =L= 35.5;
e278.. - x13 + x17 + 40*b151 =L= 35.5;
e279.. - x13 + x18 + 40*b152 =L= 36;
e280.. - x14 + x15 + 40*b153 =L= 37;
e281.. - x14 + x16 + 40*b154 =L= 35;
e282.. - x14 + x17 + 40*b155 =L= 35;
e283.. - x14 + x18 + 40*b156 =L= 35.5;
e284.. - x15 + x16 + 40*b157 =L= 36;
e285.. - x15 + x17 + 40*b158 =L= 36;
e286.. - x15 + x18 + 40*b159 =L= 36.5;
e287.. - x16 + x17 + 40*b160 =L= 34;
e288.. - x16 + x18 + 40*b161 =L= 34.5;
e289.. - x17 + x18 + 40*b162 =L= 34.5;
e290.. b19 + b55 + b91 + b127 =E= 1;
e291.. b20 + b56 + b92 + b128 =E= 1;
e292.. b21 + b57 + b93 + b129 =E= 1;
e293.. b22 + b58 + b94 + b130 =E= 1;
e294.. b23 + b59 + b95 + b131 =E= 1;
e295.. b24 + b60 + b96 + b132 =E= 1;
e296.. b25 + b61 + b97 + b133 =E= 1;
e297.. b26 + b62 + b98 + b134 =E= 1;
e298.. b27 + b63 + b99 + b135 =E= 1;
e299.. b28 + b64 + b100 + b136 =E= 1;
e300.. b29 + b65 + b101 + b137 =E= 1;
e301.. b30 + b66 + b102 + b138 =E= 1;
e302.. b31 + b67 + b103 + b139 =E= 1;
e303.. b32 + b68 + b104 + b140 =E= 1;
e304.. b33 + b69 + b105 + b141 =E= 1;
e305.. b34 + b70 + b106 + b142 =E= 1;
e306.. b35 + b71 + b107 + b143 =E= 1;
e307.. b36 + b72 + b108 + b144 =E= 1;
e308.. b37 + b73 + b109 + b145 =E= 1;
e309.. b38 + b74 + b110 + b146 =E= 1;
e310.. b39 + b75 + b111 + b147 =E= 1;
e311.. b40 + b76 + b112 + b148 =E= 1;
e312.. b41 + b77 + b113 + b149 =E= 1;
e313.. b42 + b78 + b114 + b150 =E= 1;
e314.. b43 + b79 + b115 + b151 =E= 1;
e315.. b44 + b80 + b116 + b152 =E= 1;
e316.. b45 + b81 + b117 + b153 =E= 1;
e317.. b46 + b82 + b118 + b154 =E= 1;
e318.. b47 + b83 + b119 + b155 =E= 1;
e319.. b48 + b84 + b120 + b156 =E= 1;
e320.. b49 + b85 + b121 + b157 =E= 1;
e321.. b50 + b86 + b122 + b158 =E= 1;
e322.. b51 + b87 + b123 + b159 =E= 1;
e323.. b52 + b88 + b124 + b160 =E= 1;
e324.. b53 + b89 + b125 + b161 =E= 1;
e325.. b54 + b90 + b126 + b162 =E= 1;
* set non-default bounds
x1.lo = 2.5; x1.up = 37.5;
x2.lo = 3.5; x2.up = 36.5;
x3.lo = 1.5; x3.up = 38.5;
x4.lo = 1; x4.up = 39;
x5.lo = 2; x5.up = 38;
x6.lo = 2.5; x6.up = 37.5;
x7.lo = 4; x7.up = 36;
x8.lo = 2; x8.up = 38;
x9.lo = 1; x9.up = 39;
x10.lo = 3; x10.up = 37;
x11.lo = 2.5; x11.up = 37.5;
x12.lo = 1.5; x12.up = 38.5;
x13.lo = 1.5; x13.up = 38.5;
x14.lo = 2; x14.up = 38;
x15.lo = 1; x15.up = 39;
x16.lo = 3; x16.up = 37;
x17.lo = 3; x17.up = 37;
x18.lo = 2.5; x18.up = 37.5;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

