MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sonet22v5
A variant of the graph partitioning problem where the weight of a cluster in the partition depends on the edges incident to its nodes. This instance has its origin in SONET/SDH optical networks.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -39414.62690000 (ANTIGONE) -46424.00000000 (BARON) -61709.00000000 (COUENNE) -64548.32979000 (CPLEX) -32064.00000000 (GUROBI) -47544.00000000 (LINDO) -42879.28650000 (SCIP) -48717.03739000 (SHOT) |
Referencesⓘ | Bonami, Pierre, Nguyen, Viet Hung, Klein, Michel, and Minoux, Michel, On the Solution of a Graph Partitioning Problem under Capacity Constraints. In Mahjoub, A. Ridha, Markakis, Vangelis, Milis, Ioannis, and Paschos, Vangelis Th., Eds, Combinatorial Optimization, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, 285-296. |
Sourceⓘ | QPLIB instance 2017, contributed by Pierre Bonami |
Applicationⓘ | Graph Partitioning |
Added to libraryⓘ | 18 Aug 2018 |
Problem typeⓘ | BQCQP |
#Variablesⓘ | 252 |
#Binary Variablesⓘ | 252 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 251 |
#Nonlinear Binary Variablesⓘ | 251 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 251 |
#Nonlinear Nonzeros in Objectiveⓘ | 251 |
#Constraintsⓘ | 252 |
#Linear Constraintsⓘ | 231 |
#Quadratic Constraintsⓘ | 21 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 923 |
#Nonlinear Nonzeros in Jacobianⓘ | 251 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 3456 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 21 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 21 |
Average blocksize in Hessian of Lagrangianⓘ | 11.952381 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.9129e+04 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 253 22 0 231 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 253 1 252 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 1175 673 502 0 * * Solve m using MIQCP minimizing objvar; Variables objvar,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18 ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154 ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206 ,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219 ,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232 ,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245 ,b246,b247,b248,b249,b250,b251,b252,b253; Binary Variables b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18 ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154 ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206 ,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219 ,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232 ,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245 ,b246,b247,b248,b249,b250,b251,b252,b253; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233 ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246 ,e247,e248,e249,e250,e251,e252,e253; e1.. (-24*b2*b3) - 544*b2 - 328*b3 - 152*b2*b4 - 504*b4 - 64*b2*b5 - 536*b5 - 704*b2*b6 - 248*b6 - 344*b2*b7 - 168*b7 - 456*b2*b8 - 568*b8 - 184*b2*b9 - 704*b9 - 752*b2*b10 - 424*b10 - 168*b2*b11 - 400*b11 - 576*b2*b12 - 504 *b12 - 112*b2*b13 - 736*b13 - 112*b2*b14 - 232*b14 - 696*b2*b15 - 144*b15 - 264*b2*b16 - 688*b16 - 368*b2*b17 - 456*b17 - 64*b2*b18 - 584*b18 - 32* b2*b19 - 144*b19 - 272*b2*b20 - 120*b20 - 496*b2*b21 - 472*b21 - 440*b2* b22 - 312*b22 - 392*b3*b4 - 48*b3*b5 - 288*b3*b6 - 536*b3*b7 - 360*b3*b8 - 744*b3*b9 - 744*b3*b10 - 504*b3*b11 - 64*b3*b12 - 416*b3*b13 - 432*b3* b14 - 512*b3*b15 - 192*b3*b16 - 112*b3*b17 - 32*b3*b18 - 152*b3*b19 - 568* b3*b20 - 224*b3*b21 - 104*b3*b22 - 360*b4*b5 - 416*b4*b6 - 632*b4*b7 - 88* b4*b8 - 320*b4*b9 - 96*b4*b10 - 456*b4*b11 - 384*b4*b12 - 136*b4*b13 - 344 *b4*b14 - 496*b4*b15 - 192*b4*b16 - 360*b4*b17 - 168*b4*b18 - 480*b4*b19 - 96*b4*b20 - 528*b4*b21 - 424*b4*b22 - 40*b5*b6 - 648*b5*b7 - 488*b5*b8 - 80*b5*b9 - 704*b5*b10 - 616*b5*b11 - 272*b5*b12 - 16*b5*b13 - 656*b5* b14 - 424*b5*b15 - 208*b5*b16 - 496*b5*b17 - 144*b5*b18 - 568*b5*b19 - 112 *b5*b20 - 776*b5*b21 - 656*b5*b22 - 432*b6*b7 - 72*b6*b8 - 736*b6*b9 - 440 *b6*b10 - 624*b6*b11 - 696*b6*b12 - 552*b6*b13 - 16*b6*b14 - 256*b6*b15 - 336*b6*b16 - 112*b6*b17 - 360*b6*b18 - 480*b6*b19 - 536*b6*b20 - 16*b6*b21 - 336*b6*b22 - 648*b7*b8 - 512*b7*b9 - 656*b7*b10 - 464*b7*b11 - 784*b7* b12 - 288*b7*b13 - 736*b7*b14 - 24*b7*b15 - 496*b7*b16 - 432*b7*b17 - 168* b7*b18 - 680*b7*b19 - 552*b7*b20 - 560*b7*b21 - 160*b7*b22 - 600*b8*b9 - 640*b8*b10 - 96*b8*b11 - 656*b8*b12 - 80*b8*b13 - 792*b8*b14 - 32*b8*b15 - 104*b8*b16 - 672*b8*b17 - 784*b8*b18 - 216*b8*b19 - 648*b8*b20 - 472*b8 *b21 - 376*b8*b22 - 664*b9*b10 - 424*b9*b11 - 640*b9*b12 - 280*b9*b14 - 720*b9*b15 - 784*b9*b16 - 568*b9*b17 - 664*b9*b18 - 432*b9*b19 - 688*b9* b20 - 712*b9*b21 - 216*b9*b22 - 568*b10*b11 - 80*b10*b12 - 784*b10*b13 - 728*b10*b14 - 688*b10*b15 - 240*b10*b16 - 440*b10*b17 - 160*b10*b18 - 320* b10*b19 - 56*b10*b20 - 608*b10*b21 - 424*b10*b22 - 728*b11*b12 - 600*b11* b13 - 264*b11*b14 - 576*b11*b15 - 272*b11*b16 - 256*b11*b17 - 56*b11*b18 - 696*b11*b19 - 512*b11*b20 - 56*b11*b21 - 592*b11*b22 - 432*b12*b13 - 464*b12*b14 - 776*b12*b15 - 712*b12*b16 - 96*b12*b17 - 664*b12*b18 - 632* b12*b19 - 312*b12*b20 - 56*b12*b21 - 712*b12*b22 - 712*b13*b14 - 784*b13* b15 - 216*b13*b16 - 152*b13*b17 - 48*b13*b18 - 480*b13*b20 - 104*b13*b21 - 608*b13*b22 - 520*b14*b15 - 448*b14*b16 - 408*b14*b17 - 400*b14*b18 - 224*b14*b19 - 296*b14*b20 - 272*b14*b21 - 696*b14*b22 - 192*b15*b16 - 784* b15*b17 - 376*b15*b18 - 400*b15*b19 - 40*b15*b20 - 456*b15*b21 - 384*b15* b22 - 752*b16*b17 - 168*b16*b18 - 248*b16*b19 - 200*b16*b20 - 96*b16*b21 - 304*b16*b22 - 120*b17*b18 - 16*b17*b19 - 712*b17*b20 - 752*b17*b21 - 168*b17*b22 - 760*b18*b19 - 752*b18*b20 - 264*b18*b21 - 64*b18*b22 - 568* b19*b20 - 792*b19*b21 - 512*b19*b22 - 592*b20*b21 - 8*b20*b22 - 352*b21* b22 - 24*b23*b24 - 152*b23*b25 - 64*b23*b26 - 704*b23*b27 - 344*b23*b28 - 456*b23*b29 - 184*b23*b30 - 752*b23*b31 - 168*b23*b32 - 576*b23*b33 - 112* b23*b34 - 112*b23*b35 - 696*b23*b36 - 264*b23*b37 - 368*b23*b38 - 64*b23* b39 - 32*b23*b40 - 272*b23*b41 - 496*b23*b42 - 440*b23*b43 - 392*b24*b25 - 48*b24*b26 - 288*b24*b27 - 536*b24*b28 - 360*b24*b29 - 744*b24*b30 - 744*b24*b31 - 504*b24*b32 - 64*b24*b33 - 416*b24*b34 - 432*b24*b35 - 512* b24*b36 - 192*b24*b37 - 112*b24*b38 - 32*b24*b39 - 152*b24*b40 - 568*b24* b41 - 224*b24*b42 - 104*b24*b43 - 360*b25*b26 - 416*b25*b27 - 632*b25*b28 - 88*b25*b29 - 320*b25*b30 - 96*b25*b31 - 456*b25*b32 - 384*b25*b33 - 136 *b25*b34 - 344*b25*b35 - 496*b25*b36 - 192*b25*b37 - 360*b25*b38 - 168*b25 *b39 - 480*b25*b40 - 96*b25*b41 - 528*b25*b42 - 424*b25*b43 - 40*b26*b27 - 648*b26*b28 - 488*b26*b29 - 80*b26*b30 - 704*b26*b31 - 616*b26*b32 - 272*b26*b33 - 16*b26*b34 - 656*b26*b35 - 424*b26*b36 - 208*b26*b37 - 496* b26*b38 - 144*b26*b39 - 568*b26*b40 - 112*b26*b41 - 776*b26*b42 - 656*b26* b43 - 432*b27*b28 - 72*b27*b29 - 736*b27*b30 - 440*b27*b31 - 624*b27*b32 - 696*b27*b33 - 552*b27*b34 - 16*b27*b35 - 256*b27*b36 - 336*b27*b37 - 112*b27*b38 - 360*b27*b39 - 480*b27*b40 - 536*b27*b41 - 16*b27*b42 - 336* b27*b43 - 648*b28*b29 - 512*b28*b30 - 656*b28*b31 - 464*b28*b32 - 784*b28* b33 - 288*b28*b34 - 736*b28*b35 - 24*b28*b36 - 496*b28*b37 - 432*b28*b38 - 168*b28*b39 - 680*b28*b40 - 552*b28*b41 - 560*b28*b42 - 160*b28*b43 - 600*b29*b30 - 640*b29*b31 - 96*b29*b32 - 656*b29*b33 - 80*b29*b34 - 792* b29*b35 - 32*b29*b36 - 104*b29*b37 - 672*b29*b38 - 784*b29*b39 - 216*b29* b40 - 648*b29*b41 - 472*b29*b42 - 376*b29*b43 - 664*b30*b31 - 424*b30*b32 - 640*b30*b33 - 280*b30*b35 - 720*b30*b36 - 784*b30*b37 - 568*b30*b38 - 664*b30*b39 - 432*b30*b40 - 688*b30*b41 - 712*b30*b42 - 216*b30*b43 - 568* b31*b32 - 80*b31*b33 - 784*b31*b34 - 728*b31*b35 - 688*b31*b36 - 240*b31* b37 - 440*b31*b38 - 160*b31*b39 - 320*b31*b40 - 56*b31*b41 - 608*b31*b42 - 424*b31*b43 - 728*b32*b33 - 600*b32*b34 - 264*b32*b35 - 576*b32*b36 - 272*b32*b37 - 256*b32*b38 - 56*b32*b39 - 696*b32*b40 - 512*b32*b41 - 56* b32*b42 - 592*b32*b43 - 432*b33*b34 - 464*b33*b35 - 776*b33*b36 - 712*b33* b37 - 96*b33*b38 - 664*b33*b39 - 632*b33*b40 - 312*b33*b41 - 56*b33*b42 - 712*b33*b43 - 712*b34*b35 - 784*b34*b36 - 216*b34*b37 - 152*b34*b38 - 48* b34*b39 - 480*b34*b41 - 104*b34*b42 - 608*b34*b43 - 520*b35*b36 - 448*b35* b37 - 408*b35*b38 - 400*b35*b39 - 224*b35*b40 - 296*b35*b41 - 272*b35*b42 - 696*b35*b43 - 192*b36*b37 - 784*b36*b38 - 376*b36*b39 - 400*b36*b40 - 40*b36*b41 - 456*b36*b42 - 384*b36*b43 - 752*b37*b38 - 168*b37*b39 - 248* b37*b40 - 200*b37*b41 - 96*b37*b42 - 304*b37*b43 - 120*b38*b39 - 16*b38* b40 - 712*b38*b41 - 752*b38*b42 - 168*b38*b43 - 760*b39*b40 - 752*b39*b41 - 264*b39*b42 - 64*b39*b43 - 568*b40*b41 - 792*b40*b42 - 512*b40*b43 - 592*b41*b42 - 8*b41*b43 - 352*b42*b43 - 392*b44*b45 - 48*b44*b46 - 288*b44 *b47 - 536*b44*b48 - 360*b44*b49 - 744*b44*b50 - 744*b44*b51 - 504*b44*b52 - 64*b44*b53 - 416*b44*b54 - 432*b44*b55 - 512*b44*b56 - 192*b44*b57 - 112*b44*b58 - 32*b44*b59 - 152*b44*b60 - 568*b44*b61 - 224*b44*b62 - 104* b44*b63 - 360*b45*b46 - 416*b45*b47 - 632*b45*b48 - 88*b45*b49 - 320*b45* b50 - 96*b45*b51 - 456*b45*b52 - 384*b45*b53 - 136*b45*b54 - 344*b45*b55 - 496*b45*b56 - 192*b45*b57 - 360*b45*b58 - 168*b45*b59 - 480*b45*b60 - 96*b45*b61 - 528*b45*b62 - 424*b45*b63 - 40*b46*b47 - 648*b46*b48 - 488* b46*b49 - 80*b46*b50 - 704*b46*b51 - 616*b46*b52 - 272*b46*b53 - 16*b46* b54 - 656*b46*b55 - 424*b46*b56 - 208*b46*b57 - 496*b46*b58 - 144*b46*b59 - 568*b46*b60 - 112*b46*b61 - 776*b46*b62 - 656*b46*b63 - 432*b47*b48 - 72*b47*b49 - 736*b47*b50 - 440*b47*b51 - 624*b47*b52 - 696*b47*b53 - 552* b47*b54 - 16*b47*b55 - 256*b47*b56 - 336*b47*b57 - 112*b47*b58 - 360*b47* b59 - 480*b47*b60 - 536*b47*b61 - 16*b47*b62 - 336*b47*b63 - 648*b48*b49 - 512*b48*b50 - 656*b48*b51 - 464*b48*b52 - 784*b48*b53 - 288*b48*b54 - 736*b48*b55 - 24*b48*b56 - 496*b48*b57 - 432*b48*b58 - 168*b48*b59 - 680* b48*b60 - 552*b48*b61 - 560*b48*b62 - 160*b48*b63 - 600*b49*b50 - 640*b49* b51 - 96*b49*b52 - 656*b49*b53 - 80*b49*b54 - 792*b49*b55 - 32*b49*b56 - 104*b49*b57 - 672*b49*b58 - 784*b49*b59 - 216*b49*b60 - 648*b49*b61 - 472* b49*b62 - 376*b49*b63 - 664*b50*b51 - 424*b50*b52 - 640*b50*b53 - 280*b50* b55 - 720*b50*b56 - 784*b50*b57 - 568*b50*b58 - 664*b50*b59 - 432*b50*b60 - 688*b50*b61 - 712*b50*b62 - 216*b50*b63 - 568*b51*b52 - 80*b51*b53 - 784*b51*b54 - 728*b51*b55 - 688*b51*b56 - 240*b51*b57 - 440*b51*b58 - 160* b51*b59 - 320*b51*b60 - 56*b51*b61 - 608*b51*b62 - 424*b51*b63 - 728*b52* b53 - 600*b52*b54 - 264*b52*b55 - 576*b52*b56 - 272*b52*b57 - 256*b52*b58 - 56*b52*b59 - 696*b52*b60 - 512*b52*b61 - 56*b52*b62 - 592*b52*b63 - 432 *b53*b54 - 464*b53*b55 - 776*b53*b56 - 712*b53*b57 - 96*b53*b58 - 664*b53* b59 - 632*b53*b60 - 312*b53*b61 - 56*b53*b62 - 712*b53*b63 - 712*b54*b55 - 784*b54*b56 - 216*b54*b57 - 152*b54*b58 - 48*b54*b59 - 480*b54*b61 - 104*b54*b62 - 608*b54*b63 - 520*b55*b56 - 448*b55*b57 - 408*b55*b58 - 400* b55*b59 - 224*b55*b60 - 296*b55*b61 - 272*b55*b62 - 696*b55*b63 - 192*b56* b57 - 784*b56*b58 - 376*b56*b59 - 400*b56*b60 - 40*b56*b61 - 456*b56*b62 - 384*b56*b63 - 752*b57*b58 - 168*b57*b59 - 248*b57*b60 - 200*b57*b61 - 96*b57*b62 - 304*b57*b63 - 120*b58*b59 - 16*b58*b60 - 712*b58*b61 - 752* b58*b62 - 168*b58*b63 - 760*b59*b60 - 752*b59*b61 - 264*b59*b62 - 64*b59* b63 - 568*b60*b61 - 792*b60*b62 - 512*b60*b63 - 592*b61*b62 - 8*b61*b63 - 352*b62*b63 - 360*b64*b65 - 416*b64*b66 - 632*b64*b67 - 88*b64*b68 - 320* b64*b69 - 96*b64*b70 - 456*b64*b71 - 384*b64*b72 - 136*b64*b73 - 344*b64* b74 - 496*b64*b75 - 192*b64*b76 - 360*b64*b77 - 168*b64*b78 - 480*b64*b79 - 96*b64*b80 - 528*b64*b81 - 424*b64*b82 - 40*b65*b66 - 648*b65*b67 - 488 *b65*b68 - 80*b65*b69 - 704*b65*b70 - 616*b65*b71 - 272*b65*b72 - 16*b65* b73 - 656*b65*b74 - 424*b65*b75 - 208*b65*b76 - 496*b65*b77 - 144*b65*b78 - 568*b65*b79 - 112*b65*b80 - 776*b65*b81 - 656*b65*b82 - 432*b66*b67 - 72*b66*b68 - 736*b66*b69 - 440*b66*b70 - 624*b66*b71 - 696*b66*b72 - 552* b66*b73 - 16*b66*b74 - 256*b66*b75 - 336*b66*b76 - 112*b66*b77 - 360*b66* b78 - 480*b66*b79 - 536*b66*b80 - 16*b66*b81 - 336*b66*b82 - 648*b67*b68 - 512*b67*b69 - 656*b67*b70 - 464*b67*b71 - 784*b67*b72 - 288*b67*b73 - 736*b67*b74 - 24*b67*b75 - 496*b67*b76 - 432*b67*b77 - 168*b67*b78 - 680* b67*b79 - 552*b67*b80 - 560*b67*b81 - 160*b67*b82 - 600*b68*b69 - 640*b68* b70 - 96*b68*b71 - 656*b68*b72 - 80*b68*b73 - 792*b68*b74 - 32*b68*b75 - 104*b68*b76 - 672*b68*b77 - 784*b68*b78 - 216*b68*b79 - 648*b68*b80 - 472* b68*b81 - 376*b68*b82 - 664*b69*b70 - 424*b69*b71 - 640*b69*b72 - 280*b69* b74 - 720*b69*b75 - 784*b69*b76 - 568*b69*b77 - 664*b69*b78 - 432*b69*b79 - 688*b69*b80 - 712*b69*b81 - 216*b69*b82 - 568*b70*b71 - 80*b70*b72 - 784*b70*b73 - 728*b70*b74 - 688*b70*b75 - 240*b70*b76 - 440*b70*b77 - 160* b70*b78 - 320*b70*b79 - 56*b70*b80 - 608*b70*b81 - 424*b70*b82 - 728*b71* b72 - 600*b71*b73 - 264*b71*b74 - 576*b71*b75 - 272*b71*b76 - 256*b71*b77 - 56*b71*b78 - 696*b71*b79 - 512*b71*b80 - 56*b71*b81 - 592*b71*b82 - 432 *b72*b73 - 464*b72*b74 - 776*b72*b75 - 712*b72*b76 - 96*b72*b77 - 664*b72* b78 - 632*b72*b79 - 312*b72*b80 - 56*b72*b81 - 712*b72*b82 - 712*b73*b74 - 784*b73*b75 - 216*b73*b76 - 152*b73*b77 - 48*b73*b78 - 480*b73*b80 - 104*b73*b81 - 608*b73*b82 - 520*b74*b75 - 448*b74*b76 - 408*b74*b77 - 400* b74*b78 - 224*b74*b79 - 296*b74*b80 - 272*b74*b81 - 696*b74*b82 - 192*b75* b76 - 784*b75*b77 - 376*b75*b78 - 400*b75*b79 - 40*b75*b80 - 456*b75*b81 - 384*b75*b82 - 752*b76*b77 - 168*b76*b78 - 248*b76*b79 - 200*b76*b80 - 96*b76*b81 - 304*b76*b82 - 120*b77*b78 - 16*b77*b79 - 712*b77*b80 - 752* b77*b81 - 168*b77*b82 - 760*b78*b79 - 752*b78*b80 - 264*b78*b81 - 64*b78* b82 - 568*b79*b80 - 792*b79*b81 - 512*b79*b82 - 592*b80*b81 - 8*b80*b82 - 352*b81*b82 - 40*b83*b84 - 648*b83*b85 - 488*b83*b86 - 80*b83*b87 - 704* b83*b88 - 616*b83*b89 - 272*b83*b90 - 16*b83*b91 - 656*b83*b92 - 424*b83* b93 - 208*b83*b94 - 496*b83*b95 - 144*b83*b96 - 568*b83*b97 - 112*b83*b98 - 776*b83*b99 - 656*b83*b100 - 432*b84*b85 - 72*b84*b86 - 736*b84*b87 - 440*b84*b88 - 624*b84*b89 - 696*b84*b90 - 552*b84*b91 - 16*b84*b92 - 256* b84*b93 - 336*b84*b94 - 112*b84*b95 - 360*b84*b96 - 480*b84*b97 - 536*b84* b98 - 16*b84*b99 - 336*b84*b100 - 648*b85*b86 - 512*b85*b87 - 656*b85*b88 - 464*b85*b89 - 784*b85*b90 - 288*b85*b91 - 736*b85*b92 - 24*b85*b93 - 496*b85*b94 - 432*b85*b95 - 168*b85*b96 - 680*b85*b97 - 552*b85*b98 - 560* b85*b99 - 160*b85*b100 - 600*b86*b87 - 640*b86*b88 - 96*b86*b89 - 656*b86* b90 - 80*b86*b91 - 792*b86*b92 - 32*b86*b93 - 104*b86*b94 - 672*b86*b95 - 784*b86*b96 - 216*b86*b97 - 648*b86*b98 - 472*b86*b99 - 376*b86*b100 - 664 *b87*b88 - 424*b87*b89 - 640*b87*b90 - 280*b87*b92 - 720*b87*b93 - 784*b87 *b94 - 568*b87*b95 - 664*b87*b96 - 432*b87*b97 - 688*b87*b98 - 712*b87*b99 - 216*b87*b100 - 568*b88*b89 - 80*b88*b90 - 784*b88*b91 - 728*b88*b92 - 688*b88*b93 - 240*b88*b94 - 440*b88*b95 - 160*b88*b96 - 320*b88*b97 - 56* b88*b98 - 608*b88*b99 - 424*b88*b100 - 728*b89*b90 - 600*b89*b91 - 264*b89 *b92 - 576*b89*b93 - 272*b89*b94 - 256*b89*b95 - 56*b89*b96 - 696*b89*b97 - 512*b89*b98 - 56*b89*b99 - 592*b89*b100 - 432*b90*b91 - 464*b90*b92 - 776*b90*b93 - 712*b90*b94 - 96*b90*b95 - 664*b90*b96 - 632*b90*b97 - 312* b90*b98 - 56*b90*b99 - 712*b90*b100 - 712*b91*b92 - 784*b91*b93 - 216*b91* b94 - 152*b91*b95 - 48*b91*b96 - 480*b91*b98 - 104*b91*b99 - 608*b91*b100 - 520*b92*b93 - 448*b92*b94 - 408*b92*b95 - 400*b92*b96 - 224*b92*b97 - 296*b92*b98 - 272*b92*b99 - 696*b92*b100 - 192*b93*b94 - 784*b93*b95 - 376 *b93*b96 - 400*b93*b97 - 40*b93*b98 - 456*b93*b99 - 384*b93*b100 - 752*b94 *b95 - 168*b94*b96 - 248*b94*b97 - 200*b94*b98 - 96*b94*b99 - 304*b94*b100 - 120*b95*b96 - 16*b95*b97 - 712*b95*b98 - 752*b95*b99 - 168*b95*b100 - 760*b96*b97 - 752*b96*b98 - 264*b96*b99 - 64*b96*b100 - 568*b97*b98 - 792* b97*b99 - 512*b97*b100 - 592*b98*b99 - 8*b98*b100 - 352*b99*b100 - 432* b101*b102 - 72*b101*b103 - 736*b101*b104 - 440*b101*b105 - 624*b101*b106 - 696*b101*b107 - 552*b101*b108 - 16*b101*b109 - 256*b101*b110 - 336*b101 *b111 - 112*b101*b112 - 360*b101*b113 - 480*b101*b114 - 536*b101*b115 - 16 *b101*b116 - 336*b101*b117 - 648*b102*b103 - 512*b102*b104 - 656*b102*b105 - 464*b102*b106 - 784*b102*b107 - 288*b102*b108 - 736*b102*b109 - 24*b102 *b110 - 496*b102*b111 - 432*b102*b112 - 168*b102*b113 - 680*b102*b114 - 552*b102*b115 - 560*b102*b116 - 160*b102*b117 - 600*b103*b104 - 640*b103* b105 - 96*b103*b106 - 656*b103*b107 - 80*b103*b108 - 792*b103*b109 - 32* b103*b110 - 104*b103*b111 - 672*b103*b112 - 784*b103*b113 - 216*b103*b114 - 648*b103*b115 - 472*b103*b116 - 376*b103*b117 - 664*b104*b105 - 424* b104*b106 - 640*b104*b107 - 280*b104*b109 - 720*b104*b110 - 784*b104*b111 - 568*b104*b112 - 664*b104*b113 - 432*b104*b114 - 688*b104*b115 - 712* b104*b116 - 216*b104*b117 - 568*b105*b106 - 80*b105*b107 - 784*b105*b108 - 728*b105*b109 - 688*b105*b110 - 240*b105*b111 - 440*b105*b112 - 160* b105*b113 - 320*b105*b114 - 56*b105*b115 - 608*b105*b116 - 424*b105*b117 - 728*b106*b107 - 600*b106*b108 - 264*b106*b109 - 576*b106*b110 - 272* b106*b111 - 256*b106*b112 - 56*b106*b113 - 696*b106*b114 - 512*b106*b115 - 56*b106*b116 - 592*b106*b117 - 432*b107*b108 - 464*b107*b109 - 776*b107 *b110 - 712*b107*b111 - 96*b107*b112 - 664*b107*b113 - 632*b107*b114 - 312 *b107*b115 - 56*b107*b116 - 712*b107*b117 - 712*b108*b109 - 784*b108*b110 - 216*b108*b111 - 152*b108*b112 - 48*b108*b113 - 480*b108*b115 - 104*b108 *b116 - 608*b108*b117 - 520*b109*b110 - 448*b109*b111 - 408*b109*b112 - 400*b109*b113 - 224*b109*b114 - 296*b109*b115 - 272*b109*b116 - 696*b109* b117 - 192*b110*b111 - 784*b110*b112 - 376*b110*b113 - 400*b110*b114 - 40* b110*b115 - 456*b110*b116 - 384*b110*b117 - 752*b111*b112 - 168*b111*b113 - 248*b111*b114 - 200*b111*b115 - 96*b111*b116 - 304*b111*b117 - 120*b112 *b113 - 16*b112*b114 - 712*b112*b115 - 752*b112*b116 - 168*b112*b117 - 760 *b113*b114 - 752*b113*b115 - 264*b113*b116 - 64*b113*b117 - 568*b114*b115 - 792*b114*b116 - 512*b114*b117 - 592*b115*b116 - 8*b115*b117 - 352*b116* b117 - 648*b118*b119 - 512*b118*b120 - 656*b118*b121 - 464*b118*b122 - 784 *b118*b123 - 288*b118*b124 - 736*b118*b125 - 24*b118*b126 - 496*b118*b127 - 432*b118*b128 - 168*b118*b129 - 680*b118*b130 - 552*b118*b131 - 560* b118*b132 - 160*b118*b133 - 600*b119*b120 - 640*b119*b121 - 96*b119*b122 - 656*b119*b123 - 80*b119*b124 - 792*b119*b125 - 32*b119*b126 - 104*b119* b127 - 672*b119*b128 - 784*b119*b129 - 216*b119*b130 - 648*b119*b131 - 472 *b119*b132 - 376*b119*b133 - 664*b120*b121 - 424*b120*b122 - 640*b120*b123 - 280*b120*b125 - 720*b120*b126 - 784*b120*b127 - 568*b120*b128 - 664* b120*b129 - 432*b120*b130 - 688*b120*b131 - 712*b120*b132 - 216*b120*b133 - 568*b121*b122 - 80*b121*b123 - 784*b121*b124 - 728*b121*b125 - 688*b121 *b126 - 240*b121*b127 - 440*b121*b128 - 160*b121*b129 - 320*b121*b130 - 56 *b121*b131 - 608*b121*b132 - 424*b121*b133 - 728*b122*b123 - 600*b122*b124 - 264*b122*b125 - 576*b122*b126 - 272*b122*b127 - 256*b122*b128 - 56*b122 *b129 - 696*b122*b130 - 512*b122*b131 - 56*b122*b132 - 592*b122*b133 - 432 *b123*b124 - 464*b123*b125 - 776*b123*b126 - 712*b123*b127 - 96*b123*b128 - 664*b123*b129 - 632*b123*b130 - 312*b123*b131 - 56*b123*b132 - 712*b123 *b133 - 712*b124*b125 - 784*b124*b126 - 216*b124*b127 - 152*b124*b128 - 48 *b124*b129 - 480*b124*b131 - 104*b124*b132 - 608*b124*b133 - 520*b125*b126 - 448*b125*b127 - 408*b125*b128 - 400*b125*b129 - 224*b125*b130 - 296* b125*b131 - 272*b125*b132 - 696*b125*b133 - 192*b126*b127 - 784*b126*b128 - 376*b126*b129 - 400*b126*b130 - 40*b126*b131 - 456*b126*b132 - 384*b126 *b133 - 752*b127*b128 - 168*b127*b129 - 248*b127*b130 - 200*b127*b131 - 96 *b127*b132 - 304*b127*b133 - 120*b128*b129 - 16*b128*b130 - 712*b128*b131 - 752*b128*b132 - 168*b128*b133 - 760*b129*b130 - 752*b129*b131 - 264* b129*b132 - 64*b129*b133 - 568*b130*b131 - 792*b130*b132 - 512*b130*b133 - 592*b131*b132 - 8*b131*b133 - 352*b132*b133 - 600*b134*b135 - 640*b134* b136 - 96*b134*b137 - 656*b134*b138 - 80*b134*b139 - 792*b134*b140 - 32* b134*b141 - 104*b134*b142 - 672*b134*b143 - 784*b134*b144 - 216*b134*b145 - 648*b134*b146 - 472*b134*b147 - 376*b134*b148 - 664*b135*b136 - 424* b135*b137 - 640*b135*b138 - 280*b135*b140 - 720*b135*b141 - 784*b135*b142 - 568*b135*b143 - 664*b135*b144 - 432*b135*b145 - 688*b135*b146 - 712* b135*b147 - 216*b135*b148 - 568*b136*b137 - 80*b136*b138 - 784*b136*b139 - 728*b136*b140 - 688*b136*b141 - 240*b136*b142 - 440*b136*b143 - 160* b136*b144 - 320*b136*b145 - 56*b136*b146 - 608*b136*b147 - 424*b136*b148 - 728*b137*b138 - 600*b137*b139 - 264*b137*b140 - 576*b137*b141 - 272* b137*b142 - 256*b137*b143 - 56*b137*b144 - 696*b137*b145 - 512*b137*b146 - 56*b137*b147 - 592*b137*b148 - 432*b138*b139 - 464*b138*b140 - 776*b138 *b141 - 712*b138*b142 - 96*b138*b143 - 664*b138*b144 - 632*b138*b145 - 312 *b138*b146 - 56*b138*b147 - 712*b138*b148 - 712*b139*b140 - 784*b139*b141 - 216*b139*b142 - 152*b139*b143 - 48*b139*b144 - 480*b139*b146 - 104*b139 *b147 - 608*b139*b148 - 520*b140*b141 - 448*b140*b142 - 408*b140*b143 - 400*b140*b144 - 224*b140*b145 - 296*b140*b146 - 272*b140*b147 - 696*b140* b148 - 192*b141*b142 - 784*b141*b143 - 376*b141*b144 - 400*b141*b145 - 40* b141*b146 - 456*b141*b147 - 384*b141*b148 - 752*b142*b143 - 168*b142*b144 - 248*b142*b145 - 200*b142*b146 - 96*b142*b147 - 304*b142*b148 - 120*b143 *b144 - 16*b143*b145 - 712*b143*b146 - 752*b143*b147 - 168*b143*b148 - 760 *b144*b145 - 752*b144*b146 - 264*b144*b147 - 64*b144*b148 - 568*b145*b146 - 792*b145*b147 - 512*b145*b148 - 592*b146*b147 - 8*b146*b148 - 352*b147* b148 - 664*b149*b150 - 424*b149*b151 - 640*b149*b152 - 280*b149*b153 - 720 *b149*b154 - 784*b149*b155 - 568*b149*b156 - 664*b149*b157 - 432*b149*b158 - 688*b149*b159 - 712*b149*b160 - 216*b149*b161 - 568*b150*b151 - 80*b150 *b152 - 728*b150*b153 - 688*b150*b154 - 240*b150*b155 - 440*b150*b156 - 160*b150*b157 - 320*b150*b158 - 56*b150*b159 - 608*b150*b160 - 424*b150* b161 - 784*b150*b162 - 728*b151*b152 - 264*b151*b153 - 576*b151*b154 - 272 *b151*b155 - 256*b151*b156 - 56*b151*b157 - 696*b151*b158 - 512*b151*b159 - 56*b151*b160 - 592*b151*b161 - 600*b151*b162 - 464*b152*b153 - 776*b152 *b154 - 712*b152*b155 - 96*b152*b156 - 664*b152*b157 - 632*b152*b158 - 312 *b152*b159 - 56*b152*b160 - 712*b152*b161 - 432*b152*b162 - 520*b153*b154 - 448*b153*b155 - 408*b153*b156 - 400*b153*b157 - 224*b153*b158 - 296* b153*b159 - 272*b153*b160 - 696*b153*b161 - 712*b153*b162 - 192*b154*b155 - 784*b154*b156 - 376*b154*b157 - 400*b154*b158 - 40*b154*b159 - 456*b154 *b160 - 384*b154*b161 - 784*b154*b162 - 752*b155*b156 - 168*b155*b157 - 248*b155*b158 - 200*b155*b159 - 96*b155*b160 - 304*b155*b161 - 216*b155* b162 - 120*b156*b157 - 16*b156*b158 - 712*b156*b159 - 752*b156*b160 - 168* b156*b161 - 152*b156*b162 - 760*b157*b158 - 752*b157*b159 - 264*b157*b160 - 64*b157*b161 - 48*b157*b162 - 568*b158*b159 - 792*b158*b160 - 512*b158* b161 - 592*b159*b160 - 8*b159*b161 - 480*b159*b162 - 352*b160*b161 - 104* b160*b162 - 608*b161*b162 - 568*b163*b164 - 80*b163*b165 - 784*b163*b166 - 728*b163*b167 - 688*b163*b168 - 240*b163*b169 - 440*b163*b170 - 160* b163*b171 - 320*b163*b172 - 56*b163*b173 - 608*b163*b174 - 424*b163*b175 - 728*b164*b165 - 600*b164*b166 - 264*b164*b167 - 576*b164*b168 - 272* b164*b169 - 256*b164*b170 - 56*b164*b171 - 696*b164*b172 - 512*b164*b173 - 56*b164*b174 - 592*b164*b175 - 432*b165*b166 - 464*b165*b167 - 776*b165 *b168 - 712*b165*b169 - 96*b165*b170 - 664*b165*b171 - 632*b165*b172 - 312 *b165*b173 - 56*b165*b174 - 712*b165*b175 - 712*b166*b167 - 784*b166*b168 - 216*b166*b169 - 152*b166*b170 - 48*b166*b171 - 480*b166*b173 - 104*b166 *b174 - 608*b166*b175 - 520*b167*b168 - 448*b167*b169 - 408*b167*b170 - 400*b167*b171 - 224*b167*b172 - 296*b167*b173 - 272*b167*b174 - 696*b167* b175 - 192*b168*b169 - 784*b168*b170 - 376*b168*b171 - 400*b168*b172 - 40* b168*b173 - 456*b168*b174 - 384*b168*b175 - 752*b169*b170 - 168*b169*b171 - 248*b169*b172 - 200*b169*b173 - 96*b169*b174 - 304*b169*b175 - 120*b170 *b171 - 16*b170*b172 - 712*b170*b173 - 752*b170*b174 - 168*b170*b175 - 760 *b171*b172 - 752*b171*b173 - 264*b171*b174 - 64*b171*b175 - 568*b172*b173 - 792*b172*b174 - 512*b172*b175 - 592*b173*b174 - 8*b173*b175 - 352*b174* b175 - 728*b176*b177 - 600*b176*b178 - 264*b176*b179 - 576*b176*b180 - 272 *b176*b181 - 256*b176*b182 - 56*b176*b183 - 696*b176*b184 - 512*b176*b185 - 56*b176*b186 - 592*b176*b187 - 432*b177*b178 - 464*b177*b179 - 776*b177 *b180 - 712*b177*b181 - 96*b177*b182 - 664*b177*b183 - 632*b177*b184 - 312 *b177*b185 - 56*b177*b186 - 712*b177*b187 - 712*b178*b179 - 784*b178*b180 - 216*b178*b181 - 152*b178*b182 - 48*b178*b183 - 480*b178*b185 - 104*b178 *b186 - 608*b178*b187 - 520*b179*b180 - 448*b179*b181 - 408*b179*b182 - 400*b179*b183 - 224*b179*b184 - 296*b179*b185 - 272*b179*b186 - 696*b179* b187 - 192*b180*b181 - 784*b180*b182 - 376*b180*b183 - 400*b180*b184 - 40* b180*b185 - 456*b180*b186 - 384*b180*b187 - 752*b181*b182 - 168*b181*b183 - 248*b181*b184 - 200*b181*b185 - 96*b181*b186 - 304*b181*b187 - 120*b182 *b183 - 16*b182*b184 - 712*b182*b185 - 752*b182*b186 - 168*b182*b187 - 760 *b183*b184 - 752*b183*b185 - 264*b183*b186 - 64*b183*b187 - 568*b184*b185 - 792*b184*b186 - 512*b184*b187 - 592*b185*b186 - 8*b185*b187 - 352*b186* b187 - 432*b188*b189 - 464*b188*b190 - 776*b188*b191 - 712*b188*b192 - 96* b188*b193 - 664*b188*b194 - 632*b188*b195 - 312*b188*b196 - 56*b188*b197 - 712*b188*b198 - 712*b189*b190 - 784*b189*b191 - 216*b189*b192 - 152* b189*b193 - 48*b189*b194 - 480*b189*b196 - 104*b189*b197 - 608*b189*b198 - 520*b190*b191 - 448*b190*b192 - 408*b190*b193 - 400*b190*b194 - 224* b190*b195 - 296*b190*b196 - 272*b190*b197 - 696*b190*b198 - 192*b191*b192 - 784*b191*b193 - 376*b191*b194 - 400*b191*b195 - 40*b191*b196 - 456*b191 *b197 - 384*b191*b198 - 752*b192*b193 - 168*b192*b194 - 248*b192*b195 - 200*b192*b196 - 96*b192*b197 - 304*b192*b198 - 120*b193*b194 - 16*b193* b195 - 712*b193*b196 - 752*b193*b197 - 168*b193*b198 - 760*b194*b195 - 752 *b194*b196 - 264*b194*b197 - 64*b194*b198 - 568*b195*b196 - 792*b195*b197 - 512*b195*b198 - 592*b196*b197 - 8*b196*b198 - 352*b197*b198 - 712*b199* b200 - 784*b199*b201 - 216*b199*b202 - 152*b199*b203 - 48*b199*b204 - 480* b199*b205 - 104*b199*b206 - 608*b199*b207 - 520*b200*b201 - 448*b200*b202 - 408*b200*b203 - 400*b200*b204 - 296*b200*b205 - 272*b200*b206 - 696* b200*b207 - 224*b200*b208 - 192*b201*b202 - 784*b201*b203 - 376*b201*b204 - 40*b201*b205 - 456*b201*b206 - 384*b201*b207 - 400*b201*b208 - 752*b202 *b203 - 168*b202*b204 - 200*b202*b205 - 96*b202*b206 - 304*b202*b207 - 248 *b202*b208 - 120*b203*b204 - 712*b203*b205 - 752*b203*b206 - 168*b203*b207 - 16*b203*b208 - 752*b204*b205 - 264*b204*b206 - 64*b204*b207 - 760*b204* b208 - 592*b205*b206 - 8*b205*b207 - 568*b205*b208 - 352*b206*b207 - 792* b206*b208 - 512*b207*b208 - 520*b209*b210 - 448*b209*b211 - 408*b209*b212 - 400*b209*b213 - 224*b209*b214 - 296*b209*b215 - 272*b209*b216 - 696* b209*b217 - 192*b210*b211 - 784*b210*b212 - 376*b210*b213 - 400*b210*b214 - 40*b210*b215 - 456*b210*b216 - 384*b210*b217 - 752*b211*b212 - 168*b211 *b213 - 248*b211*b214 - 200*b211*b215 - 96*b211*b216 - 304*b211*b217 - 120 *b212*b213 - 16*b212*b214 - 712*b212*b215 - 752*b212*b216 - 168*b212*b217 - 760*b213*b214 - 752*b213*b215 - 264*b213*b216 - 64*b213*b217 - 568*b214 *b215 - 792*b214*b216 - 512*b214*b217 - 592*b215*b216 - 8*b215*b217 - 352* b216*b217 - 192*b218*b219 - 784*b218*b220 - 376*b218*b221 - 400*b218*b222 - 40*b218*b223 - 456*b218*b224 - 384*b218*b225 - 752*b219*b220 - 168*b219 *b221 - 248*b219*b222 - 200*b219*b223 - 96*b219*b224 - 304*b219*b225 - 120 *b220*b221 - 16*b220*b222 - 712*b220*b223 - 752*b220*b224 - 168*b220*b225 - 760*b221*b222 - 752*b221*b223 - 264*b221*b224 - 64*b221*b225 - 568*b222 *b223 - 792*b222*b224 - 512*b222*b225 - 592*b223*b224 - 8*b223*b225 - 352* b224*b225 - 752*b226*b227 - 168*b226*b228 - 248*b226*b229 - 200*b226*b230 - 96*b226*b231 - 304*b226*b232 - 120*b227*b228 - 16*b227*b229 - 712*b227* b230 - 752*b227*b231 - 168*b227*b232 - 760*b228*b229 - 752*b228*b230 - 264 *b228*b231 - 64*b228*b232 - 568*b229*b230 - 792*b229*b231 - 512*b229*b232 - 592*b230*b231 - 8*b230*b232 - 352*b231*b232 - 120*b233*b234 - 16*b233* b235 - 712*b233*b236 - 752*b233*b237 - 168*b233*b238 - 760*b234*b235 - 752 *b234*b236 - 264*b234*b237 - 64*b234*b238 - 568*b235*b236 - 792*b235*b237 - 512*b235*b238 - 592*b236*b237 - 8*b236*b238 - 352*b237*b238 - 760*b239* b240 - 752*b239*b241 - 264*b239*b242 - 64*b239*b243 - 568*b240*b241 - 792* b240*b242 - 512*b240*b243 - 592*b241*b242 - 8*b241*b243 - 352*b242*b243 - 568*b244*b245 - 792*b244*b246 - 512*b244*b247 - 592*b245*b246 - 8*b245* b247 - 352*b246*b247 - 592*b248*b249 - 8*b248*b250 - 352*b249*b250 - 352* b251*b252 - objvar =E= 0; e2.. b2 + b23 =E= 1; e3.. b3 + b24 + b44 =E= 1; e4.. b4 + b25 + b45 + b64 =E= 1; e5.. b5 + b26 + b46 + b65 + b83 =E= 1; e6.. b6 + b27 + b47 + b66 + b84 + b101 =E= 1; e7.. b7 + b28 + b48 + b67 + b85 + b102 + b118 =E= 1; e8.. b8 + b29 + b49 + b68 + b86 + b103 + b119 + b134 =E= 1; e9.. b9 + b30 + b50 + b69 + b87 + b104 + b120 + b135 + b149 =E= 1; e10.. b10 + b31 + b51 + b70 + b88 + b105 + b121 + b136 + b150 + b163 =E= 1; e11.. b11 + b32 + b52 + b71 + b89 + b106 + b122 + b137 + b151 + b164 + b176 =E= 1; e12.. b12 + b33 + b53 + b72 + b90 + b107 + b123 + b138 + b152 + b165 + b177 + b188 =E= 1; e13.. b13 + b34 + b54 + b73 + b91 + b108 + b124 + b139 + b162 + b166 + b178 + b189 + b199 =E= 1; e14.. b14 + b35 + b55 + b74 + b92 + b109 + b125 + b140 + b153 + b167 + b179 + b190 + b200 + b209 =E= 1; e15.. b15 + b36 + b56 + b75 + b93 + b110 + b126 + b141 + b154 + b168 + b180 + b191 + b201 + b210 + b218 =E= 1; e16.. b16 + b37 + b57 + b76 + b94 + b111 + b127 + b142 + b155 + b169 + b181 + b192 + b202 + b211 + b219 + b226 =E= 1; e17.. b17 + b38 + b58 + b77 + b95 + b112 + b128 + b143 + b156 + b170 + b182 + b193 + b203 + b212 + b220 + b227 + b233 =E= 1; e18.. b18 + b39 + b59 + b78 + b96 + b113 + b129 + b144 + b157 + b171 + b183 + b194 + b204 + b213 + b221 + b228 + b234 + b239 =E= 1; e19.. b19 + b40 + b60 + b79 + b97 + b114 + b130 + b145 + b158 + b172 + b184 + b195 + b208 + b214 + b222 + b229 + b235 + b240 + b244 =E= 1; e20.. b20 + b41 + b61 + b80 + b98 + b115 + b131 + b146 + b159 + b173 + b185 + b196 + b205 + b215 + b223 + b230 + b236 + b241 + b245 + b248 =E= 1; e21.. b21 + b42 + b62 + b81 + b99 + b116 + b132 + b147 + b160 + b174 + b186 + b197 + b206 + b216 + b224 + b231 + b237 + b242 + b246 + b249 + b251 =E= 1; e22.. b22 + b43 + b63 + b82 + b100 + b117 + b133 + b148 + b161 + b175 + b187 + b198 + b207 + b217 + b225 + b232 + b238 + b243 + b247 + b250 + b252 + b253 =E= 1; e23.. - b23 + b24 =L= 0; e24.. - b23 + b25 =L= 0; e25.. - b23 + b26 =L= 0; e26.. - b23 + b27 =L= 0; e27.. - b23 + b28 =L= 0; e28.. - b23 + b29 =L= 0; e29.. - b23 + b30 =L= 0; e30.. - b23 + b31 =L= 0; e31.. - b23 + b32 =L= 0; e32.. - b23 + b33 =L= 0; e33.. - b23 + b34 =L= 0; e34.. - b23 + b35 =L= 0; e35.. - b23 + b36 =L= 0; e36.. - b23 + b37 =L= 0; e37.. - b23 + b38 =L= 0; e38.. - b23 + b39 =L= 0; e39.. - b23 + b40 =L= 0; e40.. - b23 + b41 =L= 0; e41.. - b23 + b42 =L= 0; e42.. - b23 + b43 =L= 0; e43.. - b44 + b45 =L= 0; e44.. - b44 + b46 =L= 0; e45.. - b44 + b47 =L= 0; e46.. - b44 + b48 =L= 0; e47.. - b44 + b49 =L= 0; e48.. - b44 + b50 =L= 0; e49.. - b44 + b51 =L= 0; e50.. - b44 + b52 =L= 0; e51.. - b44 + b53 =L= 0; e52.. - b44 + b54 =L= 0; e53.. - b44 + b55 =L= 0; e54.. - b44 + b56 =L= 0; e55.. - b44 + b57 =L= 0; e56.. - b44 + b58 =L= 0; e57.. - b44 + b59 =L= 0; e58.. - b44 + b60 =L= 0; e59.. - b44 + b61 =L= 0; e60.. - b44 + b62 =L= 0; e61.. - b44 + b63 =L= 0; e62.. - b64 + b65 =L= 0; e63.. - b64 + b66 =L= 0; e64.. - b64 + b67 =L= 0; e65.. - b64 + b68 =L= 0; e66.. - b64 + b69 =L= 0; e67.. - b64 + b70 =L= 0; e68.. - b64 + b71 =L= 0; e69.. - b64 + b72 =L= 0; e70.. - b64 + b73 =L= 0; e71.. - b64 + b74 =L= 0; e72.. - b64 + b75 =L= 0; e73.. - b64 + b76 =L= 0; e74.. - b64 + b77 =L= 0; e75.. - b64 + b78 =L= 0; e76.. - b64 + b79 =L= 0; e77.. - b64 + b80 =L= 0; e78.. - b64 + b81 =L= 0; e79.. - b64 + b82 =L= 0; e80.. - b83 + b84 =L= 0; e81.. - b83 + b85 =L= 0; e82.. - b83 + b86 =L= 0; e83.. - b83 + b87 =L= 0; e84.. - b83 + b88 =L= 0; e85.. - b83 + b89 =L= 0; e86.. - b83 + b90 =L= 0; e87.. - b83 + b91 =L= 0; e88.. - b83 + b92 =L= 0; e89.. - b83 + b93 =L= 0; e90.. - b83 + b94 =L= 0; e91.. - b83 + b95 =L= 0; e92.. - b83 + b96 =L= 0; e93.. - b83 + b97 =L= 0; e94.. - b83 + b98 =L= 0; e95.. - b83 + b99 =L= 0; e96.. - b83 + b100 =L= 0; e97.. - b101 + b102 =L= 0; e98.. - b101 + b103 =L= 0; e99.. - b101 + b104 =L= 0; e100.. - b101 + b105 =L= 0; e101.. - b101 + b106 =L= 0; e102.. - b101 + b107 =L= 0; e103.. - b101 + b108 =L= 0; e104.. - b101 + b109 =L= 0; e105.. - b101 + b110 =L= 0; e106.. - b101 + b111 =L= 0; e107.. - b101 + b112 =L= 0; e108.. - b101 + b113 =L= 0; e109.. - b101 + b114 =L= 0; e110.. - b101 + b115 =L= 0; e111.. - b101 + b116 =L= 0; e112.. - b101 + b117 =L= 0; e113.. - b118 + b119 =L= 0; e114.. - b118 + b120 =L= 0; e115.. - b118 + b121 =L= 0; e116.. - b118 + b122 =L= 0; e117.. - b118 + b123 =L= 0; e118.. - b118 + b124 =L= 0; e119.. - b118 + b125 =L= 0; e120.. - b118 + b126 =L= 0; e121.. - b118 + b127 =L= 0; e122.. - b118 + b128 =L= 0; e123.. - b118 + b129 =L= 0; e124.. - b118 + b130 =L= 0; e125.. - b118 + b131 =L= 0; e126.. - b118 + b132 =L= 0; e127.. - b118 + b133 =L= 0; e128.. - b134 + b135 =L= 0; e129.. - b134 + b136 =L= 0; e130.. - b134 + b137 =L= 0; e131.. - b134 + b138 =L= 0; e132.. - b134 + b139 =L= 0; e133.. - b134 + b140 =L= 0; e134.. - b134 + b141 =L= 0; e135.. - b134 + b142 =L= 0; e136.. - b134 + b143 =L= 0; e137.. - b134 + b144 =L= 0; e138.. - b134 + b145 =L= 0; e139.. - b134 + b146 =L= 0; e140.. - b134 + b147 =L= 0; e141.. - b134 + b148 =L= 0; e142.. - b149 + b150 =L= 0; e143.. - b149 + b151 =L= 0; e144.. - b149 + b152 =L= 0; e145.. - b149 + b162 =L= 0; e146.. - b149 + b153 =L= 0; e147.. - b149 + b154 =L= 0; e148.. - b149 + b155 =L= 0; e149.. - b149 + b156 =L= 0; e150.. - b149 + b157 =L= 0; e151.. - b149 + b158 =L= 0; e152.. - b149 + b159 =L= 0; e153.. - b149 + b160 =L= 0; e154.. - b149 + b161 =L= 0; e155.. - b163 + b164 =L= 0; e156.. - b163 + b165 =L= 0; e157.. - b163 + b166 =L= 0; e158.. - b163 + b167 =L= 0; e159.. - b163 + b168 =L= 0; e160.. - b163 + b169 =L= 0; e161.. - b163 + b170 =L= 0; e162.. - b163 + b171 =L= 0; e163.. - b163 + b172 =L= 0; e164.. - b163 + b173 =L= 0; e165.. - b163 + b174 =L= 0; e166.. - b163 + b175 =L= 0; e167.. - b176 + b177 =L= 0; e168.. - b176 + b178 =L= 0; e169.. - b176 + b179 =L= 0; e170.. - b176 + b180 =L= 0; e171.. - b176 + b181 =L= 0; e172.. - b176 + b182 =L= 0; e173.. - b176 + b183 =L= 0; e174.. - b176 + b184 =L= 0; e175.. - b176 + b185 =L= 0; e176.. - b176 + b186 =L= 0; e177.. - b176 + b187 =L= 0; e178.. - b188 + b189 =L= 0; e179.. - b188 + b190 =L= 0; e180.. - b188 + b191 =L= 0; e181.. - b188 + b192 =L= 0; e182.. - b188 + b193 =L= 0; e183.. - b188 + b194 =L= 0; e184.. - b188 + b195 =L= 0; e185.. - b188 + b196 =L= 0; e186.. - b188 + b197 =L= 0; e187.. - b188 + b198 =L= 0; e188.. - b199 + b200 =L= 0; e189.. - b199 + b201 =L= 0; e190.. - b199 + b202 =L= 0; e191.. - b199 + b203 =L= 0; e192.. - b199 + b204 =L= 0; e193.. - b199 + b208 =L= 0; e194.. - b199 + b205 =L= 0; e195.. - b199 + b206 =L= 0; e196.. - b199 + b207 =L= 0; e197.. - b209 + b210 =L= 0; e198.. - b209 + b211 =L= 0; e199.. - b209 + b212 =L= 0; e200.. - b209 + b213 =L= 0; e201.. - b209 + b214 =L= 0; e202.. - b209 + b215 =L= 0; e203.. - b209 + b216 =L= 0; e204.. - b209 + b217 =L= 0; e205.. - b218 + b219 =L= 0; e206.. - b218 + b220 =L= 0; e207.. - b218 + b221 =L= 0; e208.. - b218 + b222 =L= 0; e209.. - b218 + b223 =L= 0; e210.. - b218 + b224 =L= 0; e211.. - b218 + b225 =L= 0; e212.. - b226 + b227 =L= 0; e213.. - b226 + b228 =L= 0; e214.. - b226 + b229 =L= 0; e215.. - b226 + b230 =L= 0; e216.. - b226 + b231 =L= 0; e217.. - b226 + b232 =L= 0; e218.. - b233 + b234 =L= 0; e219.. - b233 + b235 =L= 0; e220.. - b233 + b236 =L= 0; e221.. - b233 + b237 =L= 0; e222.. - b233 + b238 =L= 0; e223.. - b239 + b240 =L= 0; e224.. - b239 + b241 =L= 0; e225.. - b239 + b242 =L= 0; e226.. - b239 + b243 =L= 0; e227.. - b244 + b245 =L= 0; e228.. - b244 + b246 =L= 0; e229.. - b244 + b247 =L= 0; e230.. - b248 + b249 =L= 0; e231.. - b248 + b250 =L= 0; e232.. - b251 + b252 =L= 0; e233.. 6280*b2 - 24*b3*b2 + 6448*b3 - 152*b4*b2 + 6520*b4 - 64*b5*b2 + 7376*b5 - 704*b6*b2 + 7448*b6 - 344*b7*b2 + 9752*b7 - 456*b8*b2 + 8280*b8 - 184 *b9*b2 + 9968*b9 - 752*b10*b2 + 9792*b10 - 168*b11*b2 + 8528*b11 - 576* b12*b2 + 9736*b12 - 112*b13*b2 + 6520*b13 - 112*b14*b2 + 8800*b14 - 696* b15*b2 + 9136*b15 - 264*b16*b2 + 6424*b16 - 368*b17*b2 + 7776*b17 - 64* b18*b2 + 6216*b18 - 32*b19*b2 + 8208*b19 - 272*b20*b2 + 8000*b20 - 496* b21*b2 + 8184*b21 - 440*b22*b2 + 7536*b22 - 392*b4*b3 - 48*b5*b3 - 288* b6*b3 - 536*b7*b3 - 360*b8*b3 - 744*b9*b3 - 744*b10*b3 - 504*b11*b3 - 64 *b12*b3 - 416*b13*b3 - 432*b14*b3 - 512*b15*b3 - 192*b16*b3 - 112*b17*b3 - 32*b18*b3 - 152*b19*b3 - 568*b20*b3 - 224*b21*b3 - 104*b22*b3 - 360* b5*b4 - 416*b6*b4 - 632*b7*b4 - 88*b8*b4 - 320*b9*b4 - 96*b10*b4 - 456* b11*b4 - 384*b12*b4 - 136*b13*b4 - 344*b14*b4 - 496*b15*b4 - 192*b16*b4 - 360*b17*b4 - 168*b18*b4 - 480*b19*b4 - 96*b20*b4 - 528*b21*b4 - 424* b22*b4 - 40*b6*b5 - 648*b7*b5 - 488*b8*b5 - 80*b9*b5 - 704*b10*b5 - 616* b11*b5 - 272*b12*b5 - 16*b13*b5 - 656*b14*b5 - 424*b15*b5 - 208*b16*b5 - 496*b17*b5 - 144*b18*b5 - 568*b19*b5 - 112*b20*b5 - 776*b21*b5 - 656* b22*b5 - 432*b7*b6 - 72*b8*b6 - 736*b9*b6 - 440*b10*b6 - 624*b11*b6 - 696*b12*b6 - 552*b13*b6 - 16*b14*b6 - 256*b15*b6 - 336*b16*b6 - 112*b17* b6 - 360*b18*b6 - 480*b19*b6 - 536*b20*b6 - 16*b21*b6 - 336*b22*b6 - 648 *b8*b7 - 512*b9*b7 - 656*b10*b7 - 464*b11*b7 - 784*b12*b7 - 288*b13*b7 - 736*b14*b7 - 24*b15*b7 - 496*b16*b7 - 432*b17*b7 - 168*b18*b7 - 680* b19*b7 - 552*b20*b7 - 560*b21*b7 - 160*b22*b7 - 600*b9*b8 - 640*b10*b8 - 96*b11*b8 - 656*b12*b8 - 80*b13*b8 - 792*b14*b8 - 32*b15*b8 - 104*b16 *b8 - 672*b17*b8 - 784*b18*b8 - 216*b19*b8 - 648*b20*b8 - 472*b21*b8 - 376*b22*b8 - 664*b10*b9 - 424*b11*b9 - 640*b12*b9 - 280*b14*b9 - 720*b15 *b9 - 784*b16*b9 - 568*b17*b9 - 664*b18*b9 - 432*b19*b9 - 688*b20*b9 - 712*b21*b9 - 216*b22*b9 - 568*b11*b10 - 80*b12*b10 - 784*b13*b10 - 728* b14*b10 - 688*b15*b10 - 240*b16*b10 - 440*b17*b10 - 160*b18*b10 - 320* b19*b10 - 56*b20*b10 - 608*b21*b10 - 424*b22*b10 - 728*b12*b11 - 600*b13 *b11 - 264*b14*b11 - 576*b15*b11 - 272*b16*b11 - 256*b17*b11 - 56*b18* b11 - 696*b19*b11 - 512*b20*b11 - 56*b21*b11 - 592*b22*b11 - 432*b13*b12 - 464*b14*b12 - 776*b15*b12 - 712*b16*b12 - 96*b17*b12 - 664*b18*b12 - 632*b19*b12 - 312*b20*b12 - 56*b21*b12 - 712*b22*b12 - 712*b14*b13 - 784 *b15*b13 - 216*b16*b13 - 152*b17*b13 - 48*b18*b13 - 480*b20*b13 - 104* b21*b13 - 608*b22*b13 - 520*b15*b14 - 448*b16*b14 - 408*b17*b14 - 400* b18*b14 - 224*b19*b14 - 296*b20*b14 - 272*b21*b14 - 696*b22*b14 - 192* b16*b15 - 784*b17*b15 - 376*b18*b15 - 400*b19*b15 - 40*b20*b15 - 456*b21 *b15 - 384*b22*b15 - 752*b17*b16 - 168*b18*b16 - 248*b19*b16 - 200*b20* b16 - 96*b21*b16 - 304*b22*b16 - 120*b18*b17 - 16*b19*b17 - 712*b20*b17 - 752*b21*b17 - 168*b22*b17 - 760*b19*b18 - 752*b20*b18 - 264*b21*b18 - 64*b22*b18 - 568*b20*b19 - 792*b21*b19 - 512*b22*b19 - 592*b21*b20 - 8*b22*b20 - 352*b22*b21 =L= 27089; e234.. (-24*b24*b23) - 29081*b23 + 6776*b24 - 152*b25*b23 + 7024*b25 - 64*b26* b23 + 7912*b26 - 704*b27*b23 + 7696*b27 - 344*b28*b23 + 9920*b28 - 456* b29*b23 + 8848*b29 - 184*b30*b23 + 10672*b30 - 752*b31*b23 + 10216*b31 - 168*b32*b23 + 8928*b32 - 576*b33*b23 + 10240*b33 - 112*b34*b23 + 7256 *b34 - 112*b35*b23 + 9032*b35 - 696*b36*b23 + 9280*b36 - 264*b37*b23 + 7112*b37 - 368*b38*b23 + 8232*b38 - 64*b39*b23 + 6800*b39 - 32*b40*b23 + 8352*b40 - 272*b41*b23 + 8120*b41 - 496*b42*b23 + 8656*b42 - 440*b43* b23 + 7848*b43 - 392*b25*b24 - 48*b26*b24 - 288*b27*b24 - 536*b28*b24 - 360*b29*b24 - 744*b30*b24 - 744*b31*b24 - 504*b32*b24 - 64*b33*b24 - 416 *b34*b24 - 432*b35*b24 - 512*b36*b24 - 192*b37*b24 - 112*b38*b24 - 32* b39*b24 - 152*b40*b24 - 568*b41*b24 - 224*b42*b24 - 104*b43*b24 - 360* b26*b25 - 416*b27*b25 - 632*b28*b25 - 88*b29*b25 - 320*b30*b25 - 96*b31* b25 - 456*b32*b25 - 384*b33*b25 - 136*b34*b25 - 344*b35*b25 - 496*b36* b25 - 192*b37*b25 - 360*b38*b25 - 168*b39*b25 - 480*b40*b25 - 96*b41*b25 - 528*b42*b25 - 424*b43*b25 - 40*b27*b26 - 648*b28*b26 - 488*b29*b26 - 80*b30*b26 - 704*b31*b26 - 616*b32*b26 - 272*b33*b26 - 16*b34*b26 - 656* b35*b26 - 424*b36*b26 - 208*b37*b26 - 496*b38*b26 - 144*b39*b26 - 568* b40*b26 - 112*b41*b26 - 776*b42*b26 - 656*b43*b26 - 432*b28*b27 - 72*b29 *b27 - 736*b30*b27 - 440*b31*b27 - 624*b32*b27 - 696*b33*b27 - 552*b34* b27 - 16*b35*b27 - 256*b36*b27 - 336*b37*b27 - 112*b38*b27 - 360*b39*b27 - 480*b40*b27 - 536*b41*b27 - 16*b42*b27 - 336*b43*b27 - 648*b29*b28 - 512*b30*b28 - 656*b31*b28 - 464*b32*b28 - 784*b33*b28 - 288*b34*b28 - 736*b35*b28 - 24*b36*b28 - 496*b37*b28 - 432*b38*b28 - 168*b39*b28 - 680 *b40*b28 - 552*b41*b28 - 560*b42*b28 - 160*b43*b28 - 600*b30*b29 - 640* b31*b29 - 96*b32*b29 - 656*b33*b29 - 80*b34*b29 - 792*b35*b29 - 32*b36* b29 - 104*b37*b29 - 672*b38*b29 - 784*b39*b29 - 216*b40*b29 - 648*b41* b29 - 472*b42*b29 - 376*b43*b29 - 664*b31*b30 - 424*b32*b30 - 640*b33* b30 - 280*b35*b30 - 720*b36*b30 - 784*b37*b30 - 568*b38*b30 - 664*b39* b30 - 432*b40*b30 - 688*b41*b30 - 712*b42*b30 - 216*b43*b30 - 568*b32* b31 - 80*b33*b31 - 784*b34*b31 - 728*b35*b31 - 688*b36*b31 - 240*b37*b31 - 440*b38*b31 - 160*b39*b31 - 320*b40*b31 - 56*b41*b31 - 608*b42*b31 - 424*b43*b31 - 728*b33*b32 - 600*b34*b32 - 264*b35*b32 - 576*b36*b32 - 272*b37*b32 - 256*b38*b32 - 56*b39*b32 - 696*b40*b32 - 512*b41*b32 - 56* b42*b32 - 592*b43*b32 - 432*b34*b33 - 464*b35*b33 - 776*b36*b33 - 712* b37*b33 - 96*b38*b33 - 664*b39*b33 - 632*b40*b33 - 312*b41*b33 - 56*b42* b33 - 712*b43*b33 - 712*b35*b34 - 784*b36*b34 - 216*b37*b34 - 152*b38* b34 - 48*b39*b34 - 480*b41*b34 - 104*b42*b34 - 608*b43*b34 - 520*b36*b35 - 448*b37*b35 - 408*b38*b35 - 400*b39*b35 - 224*b40*b35 - 296*b41*b35 - 272*b42*b35 - 696*b43*b35 - 192*b37*b36 - 784*b38*b36 - 376*b39*b36 - 400*b40*b36 - 40*b41*b36 - 456*b42*b36 - 384*b43*b36 - 752*b38*b37 - 168*b39*b37 - 248*b40*b37 - 200*b41*b37 - 96*b42*b37 - 304*b43*b37 - 120 *b39*b38 - 16*b40*b38 - 712*b41*b38 - 752*b42*b38 - 168*b43*b38 - 760* b40*b39 - 752*b41*b39 - 264*b42*b39 - 64*b43*b39 - 568*b41*b40 - 792*b42 *b40 - 512*b43*b40 - 592*b42*b41 - 8*b43*b41 - 352*b43*b42 =L= 0; e235.. (-392*b45*b44) - 29129*b44 + 7024*b45 - 48*b46*b44 + 7912*b46 - 288*b47* b44 + 7696*b47 - 536*b48*b44 + 9920*b48 - 360*b49*b44 + 8848*b49 - 744* b50*b44 + 10672*b50 - 744*b51*b44 + 10216*b51 - 504*b52*b44 + 8928*b52 - 64*b53*b44 + 10240*b53 - 416*b54*b44 + 7256*b54 - 432*b55*b44 + 9032* b55 - 512*b56*b44 + 9280*b56 - 192*b57*b44 + 7112*b57 - 112*b58*b44 + 8232*b58 - 32*b59*b44 + 6800*b59 - 152*b60*b44 + 8352*b60 - 568*b61*b44 + 8120*b61 - 224*b62*b44 + 8656*b62 - 104*b63*b44 + 7848*b63 - 360*b46* b45 - 416*b47*b45 - 632*b48*b45 - 88*b49*b45 - 320*b50*b45 - 96*b51*b45 - 456*b52*b45 - 384*b53*b45 - 136*b54*b45 - 344*b55*b45 - 496*b56*b45 - 192*b57*b45 - 360*b58*b45 - 168*b59*b45 - 480*b60*b45 - 96*b61*b45 - 528*b62*b45 - 424*b63*b45 - 40*b47*b46 - 648*b48*b46 - 488*b49*b46 - 80* b50*b46 - 704*b51*b46 - 616*b52*b46 - 272*b53*b46 - 16*b54*b46 - 656*b55 *b46 - 424*b56*b46 - 208*b57*b46 - 496*b58*b46 - 144*b59*b46 - 568*b60* b46 - 112*b61*b46 - 776*b62*b46 - 656*b63*b46 - 432*b48*b47 - 72*b49*b47 - 736*b50*b47 - 440*b51*b47 - 624*b52*b47 - 696*b53*b47 - 552*b54*b47 - 16*b55*b47 - 256*b56*b47 - 336*b57*b47 - 112*b58*b47 - 360*b59*b47 - 480*b60*b47 - 536*b61*b47 - 16*b62*b47 - 336*b63*b47 - 648*b49*b48 - 512 *b50*b48 - 656*b51*b48 - 464*b52*b48 - 784*b53*b48 - 288*b54*b48 - 736* b55*b48 - 24*b56*b48 - 496*b57*b48 - 432*b58*b48 - 168*b59*b48 - 680*b60 *b48 - 552*b61*b48 - 560*b62*b48 - 160*b63*b48 - 600*b50*b49 - 640*b51* b49 - 96*b52*b49 - 656*b53*b49 - 80*b54*b49 - 792*b55*b49 - 32*b56*b49 - 104*b57*b49 - 672*b58*b49 - 784*b59*b49 - 216*b60*b49 - 648*b61*b49 - 472*b62*b49 - 376*b63*b49 - 664*b51*b50 - 424*b52*b50 - 640*b53*b50 - 280*b55*b50 - 720*b56*b50 - 784*b57*b50 - 568*b58*b50 - 664*b59*b50 - 432*b60*b50 - 688*b61*b50 - 712*b62*b50 - 216*b63*b50 - 568*b52*b51 - 80*b53*b51 - 784*b54*b51 - 728*b55*b51 - 688*b56*b51 - 240*b57*b51 - 440*b58*b51 - 160*b59*b51 - 320*b60*b51 - 56*b61*b51 - 608*b62*b51 - 424 *b63*b51 - 728*b53*b52 - 600*b54*b52 - 264*b55*b52 - 576*b56*b52 - 272* b57*b52 - 256*b58*b52 - 56*b59*b52 - 696*b60*b52 - 512*b61*b52 - 56*b62* b52 - 592*b63*b52 - 432*b54*b53 - 464*b55*b53 - 776*b56*b53 - 712*b57* b53 - 96*b58*b53 - 664*b59*b53 - 632*b60*b53 - 312*b61*b53 - 56*b62*b53 - 712*b63*b53 - 712*b55*b54 - 784*b56*b54 - 216*b57*b54 - 152*b58*b54 - 48*b59*b54 - 480*b61*b54 - 104*b62*b54 - 608*b63*b54 - 520*b56*b55 - 448*b57*b55 - 408*b58*b55 - 400*b59*b55 - 224*b60*b55 - 296*b61*b55 - 272*b62*b55 - 696*b63*b55 - 192*b57*b56 - 784*b58*b56 - 376*b59*b56 - 400*b60*b56 - 40*b61*b56 - 456*b62*b56 - 384*b63*b56 - 752*b58*b57 - 168 *b59*b57 - 248*b60*b57 - 200*b61*b57 - 96*b62*b57 - 304*b63*b57 - 120* b59*b58 - 16*b60*b58 - 712*b61*b58 - 752*b62*b58 - 168*b63*b58 - 760*b60 *b59 - 752*b61*b59 - 264*b62*b59 - 64*b63*b59 - 568*b61*b60 - 792*b62* b60 - 512*b63*b60 - 592*b62*b61 - 8*b63*b61 - 352*b63*b62 =L= 0; e236.. (-360*b65*b64) - 28881*b64 + 7912*b65 - 416*b66*b64 + 7696*b66 - 632*b67 *b64 + 9920*b67 - 88*b68*b64 + 8848*b68 - 320*b69*b64 + 10672*b69 - 96* b70*b64 + 10216*b70 - 456*b71*b64 + 8928*b71 - 384*b72*b64 + 10240*b72 - 136*b73*b64 + 7256*b73 - 344*b74*b64 + 9032*b74 - 496*b75*b64 + 9280* b75 - 192*b76*b64 + 7112*b76 - 360*b77*b64 + 8232*b77 - 168*b78*b64 + 6800*b78 - 480*b79*b64 + 8352*b79 - 96*b80*b64 + 8120*b80 - 528*b81*b64 + 8656*b81 - 424*b82*b64 + 7848*b82 - 40*b66*b65 - 648*b67*b65 - 488* b68*b65 - 80*b69*b65 - 704*b70*b65 - 616*b71*b65 - 272*b72*b65 - 16*b73* b65 - 656*b74*b65 - 424*b75*b65 - 208*b76*b65 - 496*b77*b65 - 144*b78* b65 - 568*b79*b65 - 112*b80*b65 - 776*b81*b65 - 656*b82*b65 - 432*b67* b66 - 72*b68*b66 - 736*b69*b66 - 440*b70*b66 - 624*b71*b66 - 696*b72*b66 - 552*b73*b66 - 16*b74*b66 - 256*b75*b66 - 336*b76*b66 - 112*b77*b66 - 360*b78*b66 - 480*b79*b66 - 536*b80*b66 - 16*b81*b66 - 336*b82*b66 - 648 *b68*b67 - 512*b69*b67 - 656*b70*b67 - 464*b71*b67 - 784*b72*b67 - 288* b73*b67 - 736*b74*b67 - 24*b75*b67 - 496*b76*b67 - 432*b77*b67 - 168*b78 *b67 - 680*b79*b67 - 552*b80*b67 - 560*b81*b67 - 160*b82*b67 - 600*b69* b68 - 640*b70*b68 - 96*b71*b68 - 656*b72*b68 - 80*b73*b68 - 792*b74*b68 - 32*b75*b68 - 104*b76*b68 - 672*b77*b68 - 784*b78*b68 - 216*b79*b68 - 648*b80*b68 - 472*b81*b68 - 376*b82*b68 - 664*b70*b69 - 424*b71*b69 - 640*b72*b69 - 280*b74*b69 - 720*b75*b69 - 784*b76*b69 - 568*b77*b69 - 664*b78*b69 - 432*b79*b69 - 688*b80*b69 - 712*b81*b69 - 216*b82*b69 - 568*b71*b70 - 80*b72*b70 - 784*b73*b70 - 728*b74*b70 - 688*b75*b70 - 240 *b76*b70 - 440*b77*b70 - 160*b78*b70 - 320*b79*b70 - 56*b80*b70 - 608* b81*b70 - 424*b82*b70 - 728*b72*b71 - 600*b73*b71 - 264*b74*b71 - 576* b75*b71 - 272*b76*b71 - 256*b77*b71 - 56*b78*b71 - 696*b79*b71 - 512*b80 *b71 - 56*b81*b71 - 592*b82*b71 - 432*b73*b72 - 464*b74*b72 - 776*b75* b72 - 712*b76*b72 - 96*b77*b72 - 664*b78*b72 - 632*b79*b72 - 312*b80*b72 - 56*b81*b72 - 712*b82*b72 - 712*b74*b73 - 784*b75*b73 - 216*b76*b73 - 152*b77*b73 - 48*b78*b73 - 480*b80*b73 - 104*b81*b73 - 608*b82*b73 - 520 *b75*b74 - 448*b76*b74 - 408*b77*b74 - 400*b78*b74 - 224*b79*b74 - 296* b80*b74 - 272*b81*b74 - 696*b82*b74 - 192*b76*b75 - 784*b77*b75 - 376* b78*b75 - 400*b79*b75 - 40*b80*b75 - 456*b81*b75 - 384*b82*b75 - 752*b77 *b76 - 168*b78*b76 - 248*b79*b76 - 200*b80*b76 - 96*b81*b76 - 304*b82* b76 - 120*b78*b77 - 16*b79*b77 - 712*b80*b77 - 752*b81*b77 - 168*b82*b77 - 760*b79*b78 - 752*b80*b78 - 264*b81*b78 - 64*b82*b78 - 568*b80*b79 - 792*b81*b79 - 512*b82*b79 - 592*b81*b80 - 8*b82*b80 - 352*b82*b81 =L= 0; e237.. (-40*b84*b83) - 27993*b83 + 7696*b84 - 648*b85*b83 + 9920*b85 - 488*b86* b83 + 8848*b86 - 80*b87*b83 + 10672*b87 - 704*b88*b83 + 10216*b88 - 616* b89*b83 + 8928*b89 - 272*b90*b83 + 10240*b90 - 16*b91*b83 + 7256*b91 - 656*b92*b83 + 9032*b92 - 424*b93*b83 + 9280*b93 - 208*b94*b83 + 7112*b94 - 496*b95*b83 + 8232*b95 - 144*b96*b83 + 6800*b96 - 568*b97*b83 + 8352* b97 - 112*b98*b83 + 8120*b98 - 776*b99*b83 + 8656*b99 - 656*b100*b83 + 7848*b100 - 432*b85*b84 - 72*b86*b84 - 736*b87*b84 - 440*b88*b84 - 624* b89*b84 - 696*b90*b84 - 552*b91*b84 - 16*b92*b84 - 256*b93*b84 - 336*b94 *b84 - 112*b95*b84 - 360*b96*b84 - 480*b97*b84 - 536*b98*b84 - 16*b99* b84 - 336*b100*b84 - 648*b86*b85 - 512*b87*b85 - 656*b88*b85 - 464*b89* b85 - 784*b90*b85 - 288*b91*b85 - 736*b92*b85 - 24*b93*b85 - 496*b94*b85 - 432*b95*b85 - 168*b96*b85 - 680*b97*b85 - 552*b98*b85 - 560*b99*b85 - 160*b100*b85 - 600*b87*b86 - 640*b88*b86 - 96*b89*b86 - 656*b90*b86 - 80*b91*b86 - 792*b92*b86 - 32*b93*b86 - 104*b94*b86 - 672*b95*b86 - 784*b96*b86 - 216*b97*b86 - 648*b98*b86 - 472*b99*b86 - 376*b100*b86 - 664*b88*b87 - 424*b89*b87 - 640*b90*b87 - 280*b92*b87 - 720*b93*b87 - 784*b94*b87 - 568*b95*b87 - 664*b96*b87 - 432*b97*b87 - 688*b98*b87 - 712*b99*b87 - 216*b100*b87 - 568*b89*b88 - 80*b90*b88 - 784*b91*b88 - 728*b92*b88 - 688*b93*b88 - 240*b94*b88 - 440*b95*b88 - 160*b96*b88 - 320*b97*b88 - 56*b98*b88 - 608*b99*b88 - 424*b100*b88 - 728*b90*b89 - 600*b91*b89 - 264*b92*b89 - 576*b93*b89 - 272*b94*b89 - 256*b95*b89 - 56 *b96*b89 - 696*b97*b89 - 512*b98*b89 - 56*b99*b89 - 592*b100*b89 - 432* b91*b90 - 464*b92*b90 - 776*b93*b90 - 712*b94*b90 - 96*b95*b90 - 664*b96 *b90 - 632*b97*b90 - 312*b98*b90 - 56*b99*b90 - 712*b100*b90 - 712*b92* b91 - 784*b93*b91 - 216*b94*b91 - 152*b95*b91 - 48*b96*b91 - 480*b98*b91 - 104*b99*b91 - 608*b100*b91 - 520*b93*b92 - 448*b94*b92 - 408*b95*b92 - 400*b96*b92 - 224*b97*b92 - 296*b98*b92 - 272*b99*b92 - 696*b100*b92 - 192*b94*b93 - 784*b95*b93 - 376*b96*b93 - 400*b97*b93 - 40*b98*b93 - 456*b99*b93 - 384*b100*b93 - 752*b95*b94 - 168*b96*b94 - 248*b97*b94 - 200*b98*b94 - 96*b99*b94 - 304*b100*b94 - 120*b96*b95 - 16*b97*b95 - 712 *b98*b95 - 752*b99*b95 - 168*b100*b95 - 760*b97*b96 - 752*b98*b96 - 264* b99*b96 - 64*b100*b96 - 568*b98*b97 - 792*b99*b97 - 512*b100*b97 - 592* b99*b98 - 8*b100*b98 - 352*b100*b99 =L= 0; e238.. (-432*b102*b101) - 28209*b101 + 9920*b102 - 72*b103*b101 + 8848*b103 - 736*b104*b101 + 10672*b104 - 440*b105*b101 + 10216*b105 - 624*b106*b101 + 8928*b106 - 696*b107*b101 + 10240*b107 - 552*b108*b101 + 7256*b108 - 16*b109*b101 + 9032*b109 - 256*b110*b101 + 9280*b110 - 336*b111*b101 + 7112*b111 - 112*b112*b101 + 8232*b112 - 360*b113*b101 + 6800*b113 - 480* b114*b101 + 8352*b114 - 536*b115*b101 + 8120*b115 - 16*b116*b101 + 8656* b116 - 336*b117*b101 + 7848*b117 - 648*b103*b102 - 512*b104*b102 - 656* b105*b102 - 464*b106*b102 - 784*b107*b102 - 288*b108*b102 - 736*b109* b102 - 24*b110*b102 - 496*b111*b102 - 432*b112*b102 - 168*b113*b102 - 680*b114*b102 - 552*b115*b102 - 560*b116*b102 - 160*b117*b102 - 600*b104 *b103 - 640*b105*b103 - 96*b106*b103 - 656*b107*b103 - 80*b108*b103 - 792*b109*b103 - 32*b110*b103 - 104*b111*b103 - 672*b112*b103 - 784*b113* b103 - 216*b114*b103 - 648*b115*b103 - 472*b116*b103 - 376*b117*b103 - 664*b105*b104 - 424*b106*b104 - 640*b107*b104 - 280*b109*b104 - 720*b110 *b104 - 784*b111*b104 - 568*b112*b104 - 664*b113*b104 - 432*b114*b104 - 688*b115*b104 - 712*b116*b104 - 216*b117*b104 - 568*b106*b105 - 80*b107* b105 - 784*b108*b105 - 728*b109*b105 - 688*b110*b105 - 240*b111*b105 - 440*b112*b105 - 160*b113*b105 - 320*b114*b105 - 56*b115*b105 - 608*b116* b105 - 424*b117*b105 - 728*b107*b106 - 600*b108*b106 - 264*b109*b106 - 576*b110*b106 - 272*b111*b106 - 256*b112*b106 - 56*b113*b106 - 696*b114* b106 - 512*b115*b106 - 56*b116*b106 - 592*b117*b106 - 432*b108*b107 - 464*b109*b107 - 776*b110*b107 - 712*b111*b107 - 96*b112*b107 - 664*b113* b107 - 632*b114*b107 - 312*b115*b107 - 56*b116*b107 - 712*b117*b107 - 712*b109*b108 - 784*b110*b108 - 216*b111*b108 - 152*b112*b108 - 48*b113* b108 - 480*b115*b108 - 104*b116*b108 - 608*b117*b108 - 520*b110*b109 - 448*b111*b109 - 408*b112*b109 - 400*b113*b109 - 224*b114*b109 - 296*b115 *b109 - 272*b116*b109 - 696*b117*b109 - 192*b111*b110 - 784*b112*b110 - 376*b113*b110 - 400*b114*b110 - 40*b115*b110 - 456*b116*b110 - 384*b117* b110 - 752*b112*b111 - 168*b113*b111 - 248*b114*b111 - 200*b115*b111 - 96*b116*b111 - 304*b117*b111 - 120*b113*b112 - 16*b114*b112 - 712*b115* b112 - 752*b116*b112 - 168*b117*b112 - 760*b114*b113 - 752*b115*b113 - 264*b116*b113 - 64*b117*b113 - 568*b115*b114 - 792*b116*b114 - 512*b117* b114 - 592*b116*b115 - 8*b117*b115 - 352*b117*b116 =L= 0; e239.. (-648*b119*b118) - 25985*b118 + 8848*b119 - 512*b120*b118 + 10672*b120 - 656*b121*b118 + 10216*b121 - 464*b122*b118 + 8928*b122 - 784*b123* b118 + 10240*b123 - 288*b124*b118 + 7256*b124 - 736*b125*b118 + 9032* b125 - 24*b126*b118 + 9280*b126 - 496*b127*b118 + 7112*b127 - 432*b128* b118 + 8232*b128 - 168*b129*b118 + 6800*b129 - 680*b130*b118 + 8352*b130 - 552*b131*b118 + 8120*b131 - 560*b132*b118 + 8656*b132 - 160*b133*b118 + 7848*b133 - 600*b120*b119 - 640*b121*b119 - 96*b122*b119 - 656*b123* b119 - 80*b124*b119 - 792*b125*b119 - 32*b126*b119 - 104*b127*b119 - 672 *b128*b119 - 784*b129*b119 - 216*b130*b119 - 648*b131*b119 - 472*b132* b119 - 376*b133*b119 - 664*b121*b120 - 424*b122*b120 - 640*b123*b120 - 280*b125*b120 - 720*b126*b120 - 784*b127*b120 - 568*b128*b120 - 664*b129 *b120 - 432*b130*b120 - 688*b131*b120 - 712*b132*b120 - 216*b133*b120 - 568*b122*b121 - 80*b123*b121 - 784*b124*b121 - 728*b125*b121 - 688*b126* b121 - 240*b127*b121 - 440*b128*b121 - 160*b129*b121 - 320*b130*b121 - 56*b131*b121 - 608*b132*b121 - 424*b133*b121 - 728*b123*b122 - 600*b124* b122 - 264*b125*b122 - 576*b126*b122 - 272*b127*b122 - 256*b128*b122 - 56*b129*b122 - 696*b130*b122 - 512*b131*b122 - 56*b132*b122 - 592*b133* b122 - 432*b124*b123 - 464*b125*b123 - 776*b126*b123 - 712*b127*b123 - 96*b128*b123 - 664*b129*b123 - 632*b130*b123 - 312*b131*b123 - 56*b132* b123 - 712*b133*b123 - 712*b125*b124 - 784*b126*b124 - 216*b127*b124 - 152*b128*b124 - 48*b129*b124 - 480*b131*b124 - 104*b132*b124 - 608*b133* b124 - 520*b126*b125 - 448*b127*b125 - 408*b128*b125 - 400*b129*b125 - 224*b130*b125 - 296*b131*b125 - 272*b132*b125 - 696*b133*b125 - 192*b127 *b126 - 784*b128*b126 - 376*b129*b126 - 400*b130*b126 - 40*b131*b126 - 456*b132*b126 - 384*b133*b126 - 752*b128*b127 - 168*b129*b127 - 248*b130 *b127 - 200*b131*b127 - 96*b132*b127 - 304*b133*b127 - 120*b129*b128 - 16*b130*b128 - 712*b131*b128 - 752*b132*b128 - 168*b133*b128 - 760*b130* b129 - 752*b131*b129 - 264*b132*b129 - 64*b133*b129 - 568*b131*b130 - 792*b132*b130 - 512*b133*b130 - 592*b132*b131 - 8*b133*b131 - 352*b133* b132 =L= 0; e240.. (-600*b135*b134) - 27057*b134 + 10672*b135 - 640*b136*b134 + 10216*b136 - 96*b137*b134 + 8928*b137 - 656*b138*b134 + 10240*b138 - 80*b139*b134 + 7256*b139 - 792*b140*b134 + 9032*b140 - 32*b141*b134 + 9280*b141 - 104*b142*b134 + 7112*b142 - 672*b143*b134 + 8232*b143 - 784*b144*b134 + 6800*b144 - 216*b145*b134 + 8352*b145 - 648*b146*b134 + 8120*b146 - 472* b147*b134 + 8656*b147 - 376*b148*b134 + 7848*b148 - 664*b136*b135 - 424* b137*b135 - 640*b138*b135 - 280*b140*b135 - 720*b141*b135 - 784*b142* b135 - 568*b143*b135 - 664*b144*b135 - 432*b145*b135 - 688*b146*b135 - 712*b147*b135 - 216*b148*b135 - 568*b137*b136 - 80*b138*b136 - 784*b139* b136 - 728*b140*b136 - 688*b141*b136 - 240*b142*b136 - 440*b143*b136 - 160*b144*b136 - 320*b145*b136 - 56*b146*b136 - 608*b147*b136 - 424*b148* b136 - 728*b138*b137 - 600*b139*b137 - 264*b140*b137 - 576*b141*b137 - 272*b142*b137 - 256*b143*b137 - 56*b144*b137 - 696*b145*b137 - 512*b146* b137 - 56*b147*b137 - 592*b148*b137 - 432*b139*b138 - 464*b140*b138 - 776*b141*b138 - 712*b142*b138 - 96*b143*b138 - 664*b144*b138 - 632*b145* b138 - 312*b146*b138 - 56*b147*b138 - 712*b148*b138 - 712*b140*b139 - 784*b141*b139 - 216*b142*b139 - 152*b143*b139 - 48*b144*b139 - 480*b146* b139 - 104*b147*b139 - 608*b148*b139 - 520*b141*b140 - 448*b142*b140 - 408*b143*b140 - 400*b144*b140 - 224*b145*b140 - 296*b146*b140 - 272*b147 *b140 - 696*b148*b140 - 192*b142*b141 - 784*b143*b141 - 376*b144*b141 - 400*b145*b141 - 40*b146*b141 - 456*b147*b141 - 384*b148*b141 - 752*b143* b142 - 168*b144*b142 - 248*b145*b142 - 200*b146*b142 - 96*b147*b142 - 304*b148*b142 - 120*b144*b143 - 16*b145*b143 - 712*b146*b143 - 752*b147* b143 - 168*b148*b143 - 760*b145*b144 - 752*b146*b144 - 264*b147*b144 - 64*b148*b144 - 568*b146*b145 - 792*b147*b145 - 512*b148*b145 - 592*b147* b146 - 8*b148*b146 - 352*b148*b147 =L= 0; e241.. (-664*b150*b149) - 25233*b149 + 10216*b150 - 424*b151*b149 + 8928*b151 - 640*b152*b149 + 10240*b152 - 280*b153*b149 + 9032*b153 - 720*b154* b149 + 9280*b154 - 784*b155*b149 + 7112*b155 - 568*b156*b149 + 8232*b156 - 664*b157*b149 + 6800*b157 - 432*b158*b149 + 8352*b158 - 688*b159*b149 + 8120*b159 - 712*b160*b149 + 8656*b160 - 216*b161*b149 + 7848*b161 - 568*b151*b150 - 80*b152*b150 - 728*b153*b150 - 688*b154*b150 - 240*b155* b150 - 440*b156*b150 - 160*b157*b150 - 320*b158*b150 - 56*b159*b150 - 608*b160*b150 - 424*b161*b150 - 784*b162*b150 + 7256*b162 - 728*b152* b151 - 264*b153*b151 - 576*b154*b151 - 272*b155*b151 - 256*b156*b151 - 56*b157*b151 - 696*b158*b151 - 512*b159*b151 - 56*b160*b151 - 592*b161* b151 - 600*b162*b151 - 464*b153*b152 - 776*b154*b152 - 712*b155*b152 - 96*b156*b152 - 664*b157*b152 - 632*b158*b152 - 312*b159*b152 - 56*b160* b152 - 712*b161*b152 - 432*b162*b152 - 520*b154*b153 - 448*b155*b153 - 408*b156*b153 - 400*b157*b153 - 224*b158*b153 - 296*b159*b153 - 272*b160 *b153 - 696*b161*b153 - 712*b162*b153 - 192*b155*b154 - 784*b156*b154 - 376*b157*b154 - 400*b158*b154 - 40*b159*b154 - 456*b160*b154 - 384*b161* b154 - 784*b162*b154 - 752*b156*b155 - 168*b157*b155 - 248*b158*b155 - 200*b159*b155 - 96*b160*b155 - 304*b161*b155 - 216*b162*b155 - 120*b157* b156 - 16*b158*b156 - 712*b159*b156 - 752*b160*b156 - 168*b161*b156 - 152*b162*b156 - 760*b158*b157 - 752*b159*b157 - 264*b160*b157 - 64*b161* b157 - 48*b162*b157 - 568*b159*b158 - 792*b160*b158 - 512*b161*b158 - 592*b160*b159 - 8*b161*b159 - 480*b162*b159 - 352*b161*b160 - 104*b162* b160 - 608*b162*b161 =L= 0; e242.. (-568*b164*b163) - 25689*b163 + 8928*b164 - 80*b165*b163 + 10240*b165 - 784*b166*b163 + 7256*b166 - 728*b167*b163 + 9032*b167 - 688*b168*b163 + 9280*b168 - 240*b169*b163 + 7112*b169 - 440*b170*b163 + 8232*b170 - 160* b171*b163 + 6800*b171 - 320*b172*b163 + 8352*b172 - 56*b173*b163 + 8120* b173 - 608*b174*b163 + 8656*b174 - 424*b175*b163 + 7848*b175 - 728*b165* b164 - 600*b166*b164 - 264*b167*b164 - 576*b168*b164 - 272*b169*b164 - 256*b170*b164 - 56*b171*b164 - 696*b172*b164 - 512*b173*b164 - 56*b174* b164 - 592*b175*b164 - 432*b166*b165 - 464*b167*b165 - 776*b168*b165 - 712*b169*b165 - 96*b170*b165 - 664*b171*b165 - 632*b172*b165 - 312*b173* b165 - 56*b174*b165 - 712*b175*b165 - 712*b167*b166 - 784*b168*b166 - 216*b169*b166 - 152*b170*b166 - 48*b171*b166 - 480*b173*b166 - 104*b174* b166 - 608*b175*b166 - 520*b168*b167 - 448*b169*b167 - 408*b170*b167 - 400*b171*b167 - 224*b172*b167 - 296*b173*b167 - 272*b174*b167 - 696*b175 *b167 - 192*b169*b168 - 784*b170*b168 - 376*b171*b168 - 400*b172*b168 - 40*b173*b168 - 456*b174*b168 - 384*b175*b168 - 752*b170*b169 - 168*b171* b169 - 248*b172*b169 - 200*b173*b169 - 96*b174*b169 - 304*b175*b169 - 120*b171*b170 - 16*b172*b170 - 712*b173*b170 - 752*b174*b170 - 168*b175* b170 - 760*b172*b171 - 752*b173*b171 - 264*b174*b171 - 64*b175*b171 - 568*b173*b172 - 792*b174*b172 - 512*b175*b172 - 592*b174*b173 - 8*b175* b173 - 352*b175*b174 =L= 0; e243.. (-728*b177*b176) - 26977*b176 + 10240*b177 - 600*b178*b176 + 7256*b178 - 264*b179*b176 + 9032*b179 - 576*b180*b176 + 9280*b180 - 272*b181*b176 + 7112*b181 - 256*b182*b176 + 8232*b182 - 56*b183*b176 + 6800*b183 - 696*b184*b176 + 8352*b184 - 512*b185*b176 + 8120*b185 - 56*b186*b176 + 8656*b186 - 592*b187*b176 + 7848*b187 - 432*b178*b177 - 464*b179*b177 - 776*b180*b177 - 712*b181*b177 - 96*b182*b177 - 664*b183*b177 - 632*b184* b177 - 312*b185*b177 - 56*b186*b177 - 712*b187*b177 - 712*b179*b178 - 784*b180*b178 - 216*b181*b178 - 152*b182*b178 - 48*b183*b178 - 480*b185* b178 - 104*b186*b178 - 608*b187*b178 - 520*b180*b179 - 448*b181*b179 - 408*b182*b179 - 400*b183*b179 - 224*b184*b179 - 296*b185*b179 - 272*b186 *b179 - 696*b187*b179 - 192*b181*b180 - 784*b182*b180 - 376*b183*b180 - 400*b184*b180 - 40*b185*b180 - 456*b186*b180 - 384*b187*b180 - 752*b182* b181 - 168*b183*b181 - 248*b184*b181 - 200*b185*b181 - 96*b186*b181 - 304*b187*b181 - 120*b183*b182 - 16*b184*b182 - 712*b185*b182 - 752*b186* b182 - 168*b187*b182 - 760*b184*b183 - 752*b185*b183 - 264*b186*b183 - 64*b187*b183 - 568*b185*b184 - 792*b186*b184 - 512*b187*b184 - 592*b186* b185 - 8*b187*b185 - 352*b187*b186 =L= 0; e244.. (-432*b189*b188) - 25665*b188 + 7256*b189 - 464*b190*b188 + 9032*b190 - 776*b191*b188 + 9280*b191 - 712*b192*b188 + 7112*b192 - 96*b193*b188 + 8232*b193 - 664*b194*b188 + 6800*b194 - 632*b195*b188 + 8352*b195 - 312* b196*b188 + 8120*b196 - 56*b197*b188 + 8656*b197 - 712*b198*b188 + 7848* b198 - 712*b190*b189 - 784*b191*b189 - 216*b192*b189 - 152*b193*b189 - 48*b194*b189 - 480*b196*b189 - 104*b197*b189 - 608*b198*b189 - 520*b191* b190 - 448*b192*b190 - 408*b193*b190 - 400*b194*b190 - 224*b195*b190 - 296*b196*b190 - 272*b197*b190 - 696*b198*b190 - 192*b192*b191 - 784*b193 *b191 - 376*b194*b191 - 400*b195*b191 - 40*b196*b191 - 456*b197*b191 - 384*b198*b191 - 752*b193*b192 - 168*b194*b192 - 248*b195*b192 - 200*b196 *b192 - 96*b197*b192 - 304*b198*b192 - 120*b194*b193 - 16*b195*b193 - 712*b196*b193 - 752*b197*b193 - 168*b198*b193 - 760*b195*b194 - 752*b196 *b194 - 264*b197*b194 - 64*b198*b194 - 568*b196*b195 - 792*b197*b195 - 512*b198*b195 - 592*b197*b196 - 8*b198*b196 - 352*b198*b197 =L= 0; e245.. (-712*b200*b199) - 28649*b199 + 9032*b200 - 784*b201*b199 + 9280*b201 - 216*b202*b199 + 7112*b202 - 152*b203*b199 + 8232*b203 - 48*b204*b199 + 6800*b204 - 480*b205*b199 + 8120*b205 - 104*b206*b199 + 8656*b206 - 608* b207*b199 + 7848*b207 - 520*b201*b200 - 448*b202*b200 - 408*b203*b200 - 400*b204*b200 - 296*b205*b200 - 272*b206*b200 - 696*b207*b200 - 224*b208 *b200 + 8352*b208 - 192*b202*b201 - 784*b203*b201 - 376*b204*b201 - 40* b205*b201 - 456*b206*b201 - 384*b207*b201 - 400*b208*b201 - 752*b203* b202 - 168*b204*b202 - 200*b205*b202 - 96*b206*b202 - 304*b207*b202 - 248*b208*b202 - 120*b204*b203 - 712*b205*b203 - 752*b206*b203 - 168*b207 *b203 - 16*b208*b203 - 752*b205*b204 - 264*b206*b204 - 64*b207*b204 - 760*b208*b204 - 592*b206*b205 - 8*b207*b205 - 568*b208*b205 - 352*b207* b206 - 792*b208*b206 - 512*b208*b207 =L= 0; e246.. (-520*b210*b209) - 26873*b209 + 9280*b210 - 448*b211*b209 + 7112*b211 - 408*b212*b209 + 8232*b212 - 400*b213*b209 + 6800*b213 - 224*b214*b209 + 8352*b214 - 296*b215*b209 + 8120*b215 - 272*b216*b209 + 8656*b216 - 696* b217*b209 + 7848*b217 - 192*b211*b210 - 784*b212*b210 - 376*b213*b210 - 400*b214*b210 - 40*b215*b210 - 456*b216*b210 - 384*b217*b210 - 752*b212* b211 - 168*b213*b211 - 248*b214*b211 - 200*b215*b211 - 96*b216*b211 - 304*b217*b211 - 120*b213*b212 - 16*b214*b212 - 712*b215*b212 - 752*b216* b212 - 168*b217*b212 - 760*b214*b213 - 752*b215*b213 - 264*b216*b213 - 64*b217*b213 - 568*b215*b214 - 792*b216*b214 - 512*b217*b214 - 592*b216* b215 - 8*b217*b215 - 352*b217*b216 =L= 0; e247.. (-192*b219*b218) - 26625*b218 + 7112*b219 - 784*b220*b218 + 8232*b220 - 376*b221*b218 + 6800*b221 - 400*b222*b218 + 8352*b222 - 40*b223*b218 + 8120*b223 - 456*b224*b218 + 8656*b224 - 384*b225*b218 + 7848*b225 - 752* b220*b219 - 168*b221*b219 - 248*b222*b219 - 200*b223*b219 - 96*b224*b219 - 304*b225*b219 - 120*b221*b220 - 16*b222*b220 - 712*b223*b220 - 752* b224*b220 - 168*b225*b220 - 760*b222*b221 - 752*b223*b221 - 264*b224* b221 - 64*b225*b221 - 568*b223*b222 - 792*b224*b222 - 512*b225*b222 - 592*b224*b223 - 8*b225*b223 - 352*b225*b224 =L= 0; e248.. (-752*b227*b226) - 28793*b226 + 8232*b227 - 168*b228*b226 + 6800*b228 - 248*b229*b226 + 8352*b229 - 200*b230*b226 + 8120*b230 - 96*b231*b226 + 8656*b231 - 304*b232*b226 + 7848*b232 - 120*b228*b227 - 16*b229*b227 - 712*b230*b227 - 752*b231*b227 - 168*b232*b227 - 760*b229*b228 - 752*b230 *b228 - 264*b231*b228 - 64*b232*b228 - 568*b230*b229 - 792*b231*b229 - 512*b232*b229 - 592*b231*b230 - 8*b232*b230 - 352*b232*b231 =L= 0; e249.. (-120*b234*b233) - 27673*b233 + 6800*b234 - 16*b235*b233 + 8352*b235 - 712*b236*b233 + 8120*b236 - 752*b237*b233 + 8656*b237 - 168*b238*b233 + 7848*b238 - 760*b235*b234 - 752*b236*b234 - 264*b237*b234 - 64*b238*b234 - 568*b236*b235 - 792*b237*b235 - 512*b238*b235 - 592*b237*b236 - 8* b238*b236 - 352*b238*b237 =L= 0; e250.. (-760*b240*b239) - 29105*b239 + 8352*b240 - 752*b241*b239 + 8120*b241 - 264*b242*b239 + 8656*b242 - 64*b243*b239 + 7848*b243 - 568*b241*b240 - 792*b242*b240 - 512*b243*b240 - 592*b242*b241 - 8*b243*b241 - 352*b243* b242 =L= 0; e251.. (-568*b245*b244) - 27553*b244 + 8120*b245 - 792*b246*b244 + 8656*b246 - 512*b247*b244 + 7848*b247 - 592*b246*b245 - 8*b247*b245 - 352*b247*b246 =L= 0; e252.. (-592*b249*b248) - 27785*b248 + 8656*b249 - 8*b250*b248 + 7848*b250 - 352*b250*b249 =L= 0; e253.. (-352*b252*b251) - 27249*b251 + 7848*b252 =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f