MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sporttournament06
This is a quadratic model for the max-cut problem. The instance arises when minimizing so-called breaks in sports tournaments.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 12.00000001 (ANTIGONE) 12.00000002 (BARON) 12.00000000 (COUENNE) 12.00000026 (CPLEX) 12.00000000 (GUROBI) 12.00000000 (LINDO) 12.00000000 (SCIP) 12.00000000 (SHOT) |
| Referencesⓘ | Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349. |
| Sourceⓘ | POLIP instance maxcut/sched-6-4711 |
| Applicationⓘ | Sports Tournament |
| Added to libraryⓘ | 26 Feb 2014 |
| Problem typeⓘ | MBQCP |
| #Variablesⓘ | 16 |
| #Binary Variablesⓘ | 15 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 15 |
| #Nonlinear Binary Variablesⓘ | 15 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | max |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 16 |
| #Nonlinear Nonzeros in Jacobianⓘ | 15 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 48 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 15 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 15 |
| Average blocksize in Hessian of Lagrangianⓘ | 15.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 4.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 0 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 16 1 15 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 16 1 15 0
*
* Solve m using MINLP maximizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15;
Equations e1;
e1.. 2*b1*b3 - 2*b1 + 2*b3 + 2*b1*b7 - 2*b7 + 2*b2*b5 - 2*b2 - 2*b5 + 2*b2*b10
- 4*b10 - 2*b3*b4 + 2*b4 - 2*b3*b12 - 2*b3*b14 - 2*b4*b5 + 2*b4*b9 - 2*b9
- 2*b4*b15 + 2*b5*b6 - 2*b6 + 2*b5*b8 - 2*b8 + 2*b6*b9 - 2*b7*b8 + 2*b7*
b12 + 2*b7*b13 + 2*b8*b10 + 2*b8*b15 + 2*b9*b11 - 2*b11 - 2*b9*b12 + 2*b10
*b11 + 2*b10*b12 - 2*b13*b15 + 2*b14*b15 + objvar =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

