MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sporttournament10
This is a quadratic model for the max-cut problem. The instance arises when minimizing so-called breaks in sports tournaments.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 44.00000004 (ANTIGONE) 44.00000004 (BARON) 44.00000000 (COUENNE) 44.00000079 (CPLEX) 44.00000000 (GUROBI) 44.00000000 (LINDO) 44.00000000 (SCIP) 44.00000000 (SHOT) |
| Referencesⓘ | Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349. |
| Sourceⓘ | POLIP instance maxcut/sched-10-4711 |
| Applicationⓘ | Sports Tournament |
| Added to libraryⓘ | 26 Feb 2014 |
| Problem typeⓘ | MBQCP |
| #Variablesⓘ | 46 |
| #Binary Variablesⓘ | 45 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 45 |
| #Nonlinear Binary Variablesⓘ | 45 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | max |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 46 |
| #Nonlinear Nonzeros in Jacobianⓘ | 45 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 160 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 45 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 45 |
| Average blocksize in Hessian of Lagrangianⓘ | 45.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 4.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 0 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 46 1 45 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 46 1 45 0
*
* Solve m using MINLP maximizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45;
Equations e1;
e1.. 2*b1*b14 - 2*b1 - 4*b14 + 2*b1*b34 + 2*b1*b35 - 2*b1*b39 + 2*b2*b3 - 2*b2
- 2*b3 + 2*b2*b31 - 4*b31 + 2*b3*b4 - 2*b4 + 2*b3*b8 - 4*b8 - 2*b3*b43 +
2*b4*b9 - 4*b9 + 2*b5*b7 - 2*b5 - 4*b7 + 2*b5*b11 - 2*b11 + 2*b6*b7 - 2*b6
+ 2*b6*b11 + 2*b7*b13 - 2*b13 + 2*b7*b42 + 2*b8*b19 - 4*b19 + 2*b8*b28 -
2*b28 + 2*b8*b44 + 2*b9*b10 - 2*b10 + 2*b9*b18 - 2*b18 + 2*b9*b43 + 2*b10*
b19 + 2*b11*b36 - 2*b11*b40 - 2*b12*b13 + 2*b12 - 2*b12*b38 + 2*b12*b40 -
2*b12*b45 + 2*b13*b14 + 2*b13*b25 - 2*b25 + 2*b14*b16 - 2*b16 + 2*b14*b40
- 2*b15*b17 - 2*b15 - 2*b17 + 2*b15*b25 + 2*b15*b35 + 2*b15*b41 + 2*b16*
b17 + 2*b16*b26 - 2*b26 - 2*b16*b44 + 2*b17*b18 + 2*b17*b43 + 2*b18*b30 -
2*b30 - 2*b18*b35 + 2*b19*b20 - 2*b20 + 2*b19*b29 - 2*b29 + 2*b20*b30 - 2*
b21*b22 + 2*b21 + 2*b22 - 2*b21*b23 - 2*b23 - 2*b22*b24 - 2*b24 - 2*b22*
b36 + 2*b22*b38 + 2*b23*b24 + 2*b23*b42 + 2*b23*b45 + 2*b24*b26 + 2*b24*
b39 - 2*b25*b27 - 2*b27 + 2*b25*b36 + 2*b26*b27 - 2*b26*b42 + 2*b27*b28 +
2*b27*b44 + 2*b28*b29 - 2*b28*b37 + 2*b29*b31 - 2*b29*b34 + 2*b30*b32 - 2*
b32 - 2*b30*b33 + 2*b31*b32 + 2*b31*b33 + 2*b33*b34 - 2*b33*b35 - 2*b34*
b37 - 2*b36*b41 + 2*b37*b39 + 2*b37*b41 - 2*b39*b40 - 2*b41*b42 - 2*b43*
b44 + objvar =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

