MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance sporttournament28

This is a quadratic model for the max-cut problem. The instance arises
when minimizing so-called breaks in sports tournaments.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
368.00000000 p1 ( gdx sol )
(infeas: 0)
370.00000000 p2 ( gdx sol )
(infeas: 6e-14)
372.00000000 p3 ( gdx sol )
(infeas: 0)
384.00000000 p4 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
425.00000000 (ANTIGONE)
384.71987090 (BARON)
449.00000000 (COUENNE)
438.61438840 (CPLEX)
384.00000000 (GUROBI)
414.00000000 (LINDO)
384.00000000 (SCIP)
384.00000000 (SHOT)
References Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349.
Source POLIP instance maxcut/sched-28-4711
Application Sports Tournament
Added to library 26 Feb 2014
Problem type MBQCP
#Variables 379
#Binary Variables 378
#Integer Variables 0
#Nonlinear Variables 378
#Nonlinear Binary Variables 378
#Nonlinear Integer Variables 0
Objective Sense max
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 1
#Linear Constraints 0
#Quadratic Constraints 1
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 379
#Nonlinear Nonzeros in Jacobian 378
#Nonzeros in (Upper-Left) Hessian of Lagrangian 1456
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 378
Maximal blocksize in Hessian of Lagrangian 378
Average blocksize in Hessian of Lagrangian 378.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 4.0000e+00
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        0        0        1        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        379        1      378        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        379        1      378        0
*
*  Solve m using MINLP maximizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
          ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
          ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
          ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
          ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
          ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
          ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
          ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207
          ,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220
          ,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233
          ,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246
          ,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259
          ,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272
          ,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285
          ,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298
          ,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310,b311
          ,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323,b324
          ,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336,b337
          ,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348,b349,b350
          ,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361,b362,b363
          ,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374,b375,b376
          ,b377,b378,objvar;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
          ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
          ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
          ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
          ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
          ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
          ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
          ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
          ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
          ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
          ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
          ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
          ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
          ,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205
          ,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218
          ,b219,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231
          ,b232,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244
          ,b245,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257
          ,b258,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270
          ,b271,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283
          ,b284,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296
          ,b297,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309
          ,b310,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322
          ,b323,b324,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335
          ,b336,b337,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348
          ,b349,b350,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361
          ,b362,b363,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374
          ,b375,b376,b377,b378;

Equations  e1;


e1.. (-2*b1*b206) - 2*b1 + 2*b206 + 2*b1*b209 - 2*b209 + 2*b1*b250 + 2*b1*b262
      + 2*b2*b130 - 2*b2 - 2*b130 + 2*b2*b219 + 2*b219 + 2*b2*b258 - 2*b2*b273
      + 2*b3*b107 - 2*b3 - 2*b107 + 2*b3*b253 + 2*b3*b258 - 2*b3*b280 + 2*b4*b6
      - 2*b4 - 4*b6 + 2*b4*b8 - 2*b8 + 2*b4*b264 - 2*b4*b295 + 2*b5*b88 - 2*b5
      - 2*b88 + 2*b5*b132 - 2*b132 + 2*b5*b253 - 2*b5*b287 + 2*b6*b70 - 2*b70
      + 2*b6*b108 - 2*b108 + 2*b6*b132 + 2*b7*b59 - 2*b7 - 2*b59 - 2*b7*b197 + 
     2*b197 + 2*b7*b298 + 2*b7*b299 + 2*b8*b255 + 2*b8*b280 - 2*b8*b310 + 2*b9*
     b54 - 4*b9 - 2*b54 + 2*b9*b108 + 2*b9*b267 + 2*b9*b287 + 2*b10*b59 - 2*b10
      + 2*b10*b77 - 2*b77 - 2*b10*b229 + 2*b229 + 2*b10*b307 + 2*b11*b77 - 2*
     b11 + 2*b11*b93 - 2*b93 + 2*b11*b115 - 2*b115 - 2*b11*b314 + 2*b12*b15 - 2
     *b12 - 2*b15 + 2*b12*b244 - 2*b244 - 2*b13*b56 - 2*b13 - 2*b56 + 2*b13*b90
      - 2*b90 + 2*b13*b221 - 2*b221 + 2*b13*b224 + 2*b224 + 2*b14*b93 - 2*b14
      + 2*b14*b116 - 4*b116 + 2*b14*b140 - 4*b140 - 2*b14*b320 + 2*b15*b16 - 2*
     b16 - 2*b15*b63 - 2*b63 + 2*b15*b81 - 4*b81 + 2*b16*b19 - 2*b19 + 2*b17*
     b116 - 2*b17 + 2*b17*b142 - 4*b142 + 2*b17*b167 - 4*b167 - 2*b17*b324 + 2*
     b18*b27 - 2*b18 - 2*b27 + 2*b18*b34 - 4*b34 - 2*b18*b93 + 2*b18*b142 + 2*
     b19*b20 - 2*b20 - 2*b19*b48 - 2*b48 + 2*b19*b102 - 4*b102 + 2*b20*b23 - 2*
     b23 + 2*b21*b142 - 4*b21 + 2*b21*b169 - 4*b169 + 2*b21*b198 - 4*b198 + 2*
     b21*b324 + 2*b22*b34 - 2*b22 + 2*b22*b44 - 4*b44 - 2*b22*b77 + 2*b22*b169
      + 2*b23*b24 - 2*b24 - 2*b23*b35 - 2*b35 + 2*b23*b125 - 4*b125 + 2*b24*b28
      - 2*b28 + 2*b25*b169 - 4*b25 + 2*b25*b200 - 4*b200 + 2*b25*b230 - 4*b230
      + 2*b25*b320 + 2*b26*b44 - 2*b26 - 2*b26*b59 + 2*b26*b61 - 4*b61 + 2*b26*
     b200 + 2*b27*b234 - 4*b234 + 2*b27*b321 - 2*b27*b325 + 2*b28*b29 - 2*b29
      + 2*b28*b150 - 4*b150 - 2*b28*b337 + 2*b29*b36 - 4*b36 + 2*b30*b31 - 2*
     b30 - 2*b31 + 2*b30*b73 - 2*b73 + 2*b30*b137 - 4*b137 - 2*b30*b281 + 2*b31
     *b57 - 2*b57 + 2*b31*b305 - 2*b31*b347 + 2*b32*b200 - 2*b32 + 2*b32*b232
      - 2*b232 - 2*b32*b245 + 2*b32*b314 + 2*b33*b61 - 2*b33 + 2*b33*b79 - 4*
     b79 + 2*b33*b232 - 2*b33*b299 + 2*b34*b96 - 4*b96 + 2*b34*b315 + 2*b35*b49
      - 4*b49 + 2*b35*b62 - 4*b62 + 2*b35*b335 + 2*b36*b37 - 2*b37 + 2*b36*b242
      - 2*b242 + 2*b36*b337 + 2*b37*b49 + 2*b38*b85 - 2*b38 - 4*b85 + 2*b38*
     b251 + 2*b38*b293 - 2*b38*b351 + 2*b39*b54 - 2*b39 + 2*b39*b130 - 2*b39*
     b255 + 2*b39*b346 + 2*b40*b42 - 4*b40 - 4*b42 + 2*b40*b268 + 2*b40*b282 + 
     2*b40*b341 + 2*b41*b76 + 2*b41 - 4*b76 - 2*b41*b195 + 2*b195 - 2*b41*b197
      - 2*b41*b245 + 2*b42*b197 + 2*b42*b245 + 2*b42*b305 + 2*b43*b79 - 2*b43
      + 2*b43*b95 - 4*b95 - 2*b43*b233 - 2*b233 + 2*b43*b299 + 2*b44*b308 + 2*
     b44*b325 - 2*b45*b46 - 2*b45 + 2*b46 + 2*b45*b246 + 2*b45*b250 + 2*b45*
     b325 + 2*b46*b80 - 4*b80 - 2*b46*b335 - 2*b46*b354 + 2*b47*b48 - 2*b47 + 2
     *b47*b337 - 2*b47*b343 + 2*b47*b344 + 2*b48*b64 - 4*b64 + 2*b48*b80 + 2*
     b49*b50 - 2*b50 + 2*b49*b210 - 4*b210 + 2*b50*b64 + 2*b51*b301 - 2*b51 + 2
     *b51*b302 + 2*b52*b67 - 2*b52 - 4*b67 + 2*b52*b249 + 2*b52*b301 - 2*b52*
     b356 - 2*b53*b184 + 2*b53 - 2*b184 + 2*b53*b217 - 2*b217 - 2*b53*b251 - 2*
     b53*b323 + 2*b54*b129 - 2*b129 - 2*b54*b358 + 2*b55*b56 - 4*b55 + 2*b55*
     b134 - 2*b134 + 2*b55*b264 + 2*b55*b358 + 2*b56*b110 - 2*b110 + 2*b56*b188
      - 4*b188 + 2*b57*b259 + 2*b57*b275 - 2*b57*b348 + 2*b58*b274 - 4*b58 + 2*
     b58*b289 + 2*b58*b334 + 2*b58*b348 + 2*b59*b60 - 2*b60 + 2*b60*b95 + 2*b60
     *b119 - 4*b119 - 2*b60*b201 - 2*b201 + 2*b61*b300 + 2*b61*b321 + 2*b62*b63
      + 2*b62*b100 - 2*b100 + 2*b62*b343 + 2*b63*b82 - 2*b82 + 2*b63*b101 - 4*
     b101 + 2*b64*b65 - 2*b65 + 2*b64*b243 - 4*b243 + 2*b65*b82 + 2*b66*b67 - 2
     *b66 + 2*b66*b293 + 2*b67*b153 - 2*b153 + 2*b67*b357 - 2*b68*b183 + 2*b68
      - 2*b183 - 2*b68*b249 - 2*b68*b301 + 2*b68*b302 + 2*b69*b186 + 2*b69 - 2*
     b186 - 2*b69*b249 - 2*b69*b272 - 2*b69*b318 + 2*b70*b156 - 2*b156 + 2*b70*
     b323 - 2*b70*b361 + 2*b71*b319 - 2*b71 - 2*b71*b328 + 2*b71*b358 + 2*b71*
     b361 + 2*b72*b73 - 2*b72 - 2*b72*b74 + 2*b74 + 2*b72*b110 + 2*b72*b297 + 2
     *b73*b76 - 2*b73*b139 + 4*b139 + 2*b74*b76 - 2*b74*b113 + 4*b113 - 2*b74*
     b363 - 2*b75*b259 + 2*b75 + 2*b75*b269 - 2*b75*b341 - 2*b75*b342 + 2*b76*
     b342 + 2*b77*b78 - 2*b78 + 2*b78*b119 + 2*b78*b145 - 4*b145 - 2*b78*b170
      - 2*b170 + 2*b79*b292 + 2*b79*b315 + 2*b80*b81 + 2*b80*b122 - 2*b122 + 2*
     b81*b103 - 2*b103 + 2*b81*b123 - 4*b123 + 2*b82*b83 - 2*b83 - 2*b82*b262
      + 2*b83*b103 + 2*b84*b85 - 2*b84 + 2*b84*b212 + 2*b212 + 2*b85*b352 + 2*
     b85*b355 - 2*b86*b214 + 2*b86 - 2*b214 - 2*b86*b251 - 2*b86*b293 + 2*b86*
     b294 + 2*b87*b156 - 2*b87 + 2*b87*b214 - 2*b87*b304 + 2*b87*b339 + 2*b88*
     b186 + 2*b88*b318 - 2*b88*b365 + 2*b89*b189 - 2*b89 + 2*b189 - 2*b89*b333
      + 2*b89*b361 + 2*b89*b365 + 2*b90*b136 - 2*b136 - 2*b90*b226 + 2*b226 + 2
     *b90*b274 - 2*b91*b92 + 4*b91 + 2*b92 - 2*b91*b268 - 2*b91*b269 - 2*b91*
     b334 + 2*b92*b307 - 2*b92*b320 - 2*b92*b367 + 2*b93*b94 - 2*b94 - 2*b94*
     b143 - 2*b143 + 2*b94*b145 + 2*b94*b172 - 4*b172 + 2*b95*b97 - 4*b97 + 2*
     b95*b308 + 2*b96*b99 - 4*b99 + 2*b96*b237 - 4*b237 + 2*b96*b270 + 2*b97*
     b99 + 2*b97*b172 + 2*b97*b291 - 2*b98*b100 + 2*b98 + 2*b98*b205 - 4*b205
      - 2*b98*b248 - 2*b98*b321 + 2*b99*b100 + 2*b99*b248 + 2*b100*b149 - 4*
     b149 + 2*b101*b102 + 2*b101*b148 - 2*b148 + 2*b101*b336 + 2*b102*b126 - 2*
     b126 + 2*b102*b149 + 2*b103*b104 - 2*b104 - 2*b103*b124 + 2*b124 + 2*b104*
     b126 - 2*b105*b284 + 2*b105 + 2*b105*b286 - 2*b105*b345 - 2*b105*b368 + 2*
     b106*b129 - 2*b106 + 2*b106*b286 - 2*b106*b295 + 2*b106*b345 + 2*b107*b217
      + 2*b107*b311 - 2*b107*b369 - 2*b108*b160 + 2*b160 + 2*b108*b257 - 2*b109
     *b134 - 2*b109 + 2*b109*b160 + 2*b109*b365 + 2*b109*b369 - 2*b110*b112 + 2
     *b112 + 2*b110*b266 + 2*b111*b162 - 2*b111 - 2*b162 - 2*b111*b193 + 2*b193
      + 2*b111*b268 + 2*b111*b281 + 2*b112*b193 - 2*b112*b334 - 2*b112*b370 - 2
     *b113*b114 + 2*b114 - 2*b113*b274 - 2*b113*b275 + 2*b114*b115 - 2*b114*
     b324 - 2*b114*b371 + 2*b115*b141 - 2*b141 - 2*b115*b269 + 2*b116*b118 - 4*
     b118 + 2*b116*b234 + 2*b117*b118 - 4*b117 + 2*b117*b141 + 2*b117*b234 + 2*
     b117*b290 + 2*b118*b172 + 2*b118*b203 - 4*b203 + 2*b119*b120 - 4*b120 + 2*
     b119*b300 + 2*b120*b175 + 2*b175 + 2*b120*b203 + 2*b120*b364 - 2*b121*b122
      + 2*b121 + 2*b121*b174 - 4*b174 - 2*b121*b206 - 2*b121*b315 + 2*b122*b178
      - 4*b178 + 2*b122*b364 + 2*b123*b125 + 2*b123*b177 - 2*b177 + 2*b123*b344
      + 2*b124*b151 - 4*b151 - 2*b124*b247 - 2*b124*b254 + 2*b125*b151 + 2*b125
     *b178 + 2*b126*b127 - 2*b127 - 2*b126*b209 + 2*b127*b151 - 2*b128*b277 + 2
     *b128 + 2*b128*b279 - 2*b128*b339 - 2*b128*b372 - 2*b129*b131 + 2*b131 + 2
     *b129*b285 - 2*b130*b158 - 2*b158 + 2*b130*b304 + 2*b131*b158 - 2*b131*
     b369 - 2*b131*b373 - 2*b132*b135 - 2*b135 + 2*b132*b252 + 2*b133*b135 - 4*
     b133 + 2*b133*b158 + 2*b133*b333 + 2*b133*b369 + 2*b134*b137 + 2*b134*b313
      + 2*b135*b137 + 2*b135*b296 + 2*b136*b257 + 2*b136*b328 - 2*b136*b353 + 2
     *b137*b353 - 2*b138*b163 - 2*b138 + 2*b163 + 2*b138*b259 + 2*b138*b288 + 2
     *b138*b313 - 2*b139*b226 - 2*b139*b282 - 2*b139*b329 + 2*b140*b168 - 2*
     b168 + 2*b140*b269 + 2*b140*b329 + 2*b141*b143 - 2*b141*b307 + 2*b142*b144
      - 4*b144 + 2*b143*b144 + 2*b143*b168 + 2*b144*b203 + 2*b144*b236 - 4*b236
      + 2*b145*b146 - 4*b146 + 2*b145*b292 + 2*b146*b147 + 2*b147 + 2*b146*b236
      + 2*b146*b360 - 2*b147*b148 - 2*b147*b176 + 2*b176 - 2*b147*b308 + 2*b148
     *b208 - 2*b208 + 2*b148*b360 + 2*b149*b150 + 2*b149*b207 - 2*b207 + 2*b150
     *b179 - 4*b179 + 2*b150*b208 + 2*b151*b152 - 2*b152 + 2*b152*b179 + 2*b153
     *b155 - 4*b155 - 2*b154*b271 + 2*b154 + 2*b154*b326 - 2*b154*b330 - 2*b154
     *b331 + 2*b155*b271 + 2*b155*b331 + 2*b155*b338 - 2*b156*b157 + 2*b157 + 2
     *b156*b278 + 2*b157*b187 - 2*b187 - 2*b157*b365 - 2*b157*b375 + 2*b158*
     b159 - 4*b159 + 2*b159*b161 - 2*b161 + 2*b159*b187 + 2*b159*b328 - 2*b160*
     b296 - 2*b160*b370 - 2*b161*b253 + 2*b161*b288 + 2*b161*b370 + 2*b162*b252
      + 2*b162*b333 - 2*b162*b347 - 2*b163*b195 + 2*b163*b353 - 2*b163*b374 - 2
     *b164*b165 + 2*b164 - 2*b165 - 2*b164*b193 + 2*b164*b227 - 2*b227 - 2*b164
     *b289 + 2*b165*b167 + 2*b165*b320 + 2*b165*b374 - 2*b166*b199 + 2*b166 - 2
     *b199 - 2*b166*b289 - 2*b166*b290 + 2*b166*b348 + 2*b167*b199 + 2*b167*
     b275 + 2*b168*b170 - 2*b168*b298 + 2*b169*b171 - 4*b171 + 2*b170*b171 + 2*
     b170*b199 + 2*b171*b173 - 2*b173 + 2*b171*b236 + 2*b172*b174 + 2*b173*b174
      + 2*b173*b202 - 4*b202 - 2*b173*b246 + 2*b174*b354 - 2*b175*b177 - 2*b175
     *b250 - 2*b175*b300 - 2*b176*b241 - 2*b241 - 2*b176*b247 + 2*b176*b270 + 2
     *b177*b241 + 2*b177*b354 + 2*b178*b240 - 4*b240 + 2*b178*b242 + 2*b179*
     b262 + 2*b179*b376 - 2*b180*b284 + 2*b180 - 2*b180*b372 - 2*b181*b182 + 4*
     b181 - 2*b182 - 2*b181*b276 - 2*b181*b326 - 2*b181*b327 + 2*b182*b184 + 2*
     b182*b339 + 2*b182*b372 + 2*b183*b185 - 4*b185 + 2*b183*b332 + 2*b183*b357
      + 2*b184*b185 + 2*b184*b276 + 2*b185*b303 + 2*b185*b375 + 2*b186*b332 - 2
     *b186*b362 + 2*b187*b188 - 2*b187*b265 + 2*b188*b190 - 2*b190 + 2*b188*
     b218 - 2*b218 - 2*b189*b267 - 2*b189*b288 - 2*b189*b366 - 2*b190*b258 + 2*
     b190*b281 + 2*b190*b366 - 2*b191*b194 + 2*b191 - 2*b194 - 2*b191*b268 - 2*
     b191*b296 + 2*b191*b297 + 2*b192*b194 - 2*b192 - 2*b192*b313 + 2*b192*b341
      + 2*b192*b366 - 2*b193*b371 + 2*b194*b195 + 2*b194*b371 - 2*b195*b196 - 2
     *b196 + 2*b196*b198 + 2*b196*b314 + 2*b196*b371 - 2*b197*b231 - 2*b231 + 2
     *b198*b231 + 2*b198*b282 + 2*b199*b201 + 2*b200*b202 + 2*b201*b202 + 2*
     b201*b231 + 2*b202*b204 - 4*b204 + 2*b203*b205 + 2*b204*b205 + 2*b204*b235
      - 4*b235 + 2*b204*b246 + 2*b205*b350 + 2*b206*b261 - 2*b206*b263 + 2*b207
     *b263 - 2*b207*b291 + 2*b207*b350 + 2*b208*b210 - 2*b208*b250 + 2*b209*
     b244 + 2*b209*b247 + 2*b210*b244 + 2*b210*b263 - 2*b211*b294 + 2*b211 - 2*
     b211*b368 - 2*b212*b213 - 2*b213 - 2*b212*b283 - 2*b212*b322 + 2*b213*b215
      - 2*b215 + 2*b213*b345 + 2*b213*b368 + 2*b214*b216 - 4*b216 + 2*b214*b352
      + 2*b215*b216 - 2*b215*b255 + 2*b215*b283 + 2*b216*b295 + 2*b216*b373 + 2
     *b217*b340 - 2*b217*b359 + 2*b218*b220 - 4*b220 - 2*b218*b273 + 2*b218*
     b362 - 2*b219*b221 - 2*b219*b264 - 2*b219*b266 + 2*b220*b221 + 2*b220*b312
      + 2*b220*b319 + 2*b221*b223 - 2*b223 - 2*b222*b225 + 2*b222 - 2*b225 - 2*
     b222*b257 + 2*b222*b260 - 2*b222*b333 + 2*b223*b225 - 2*b223*b319 + 2*b223
     *b363 - 2*b224*b227 - 2*b224*b274 - 2*b224*b288 + 2*b225*b227 + 2*b225*
     b334 + 2*b226*b363 - 2*b226*b367 + 2*b227*b367 + 2*b228*b229 - 2*b228 + 2*
     b228*b230 - 2*b228*b305 + 2*b228*b367 - 2*b229*b348 - 2*b229*b349 + 2*b230
     *b289 + 2*b230*b349 + 2*b231*b233 + 2*b232*b235 - 2*b232*b349 + 2*b233*
     b235 + 2*b233*b349 + 2*b234*b237 + 2*b235*b237 + 2*b236*b238 - 4*b238 + 2*
     b237*b238 + 2*b238*b239 - 2*b239 + 2*b238*b261 + 2*b239*b240 - 2*b239*b321
      + 2*b239*b343 + 2*b240*b254 + 2*b240*b291 + 2*b241*b242 + 2*b241*b243 - 2
     *b242*b377 + 2*b243*b254 + 2*b243*b377 - 2*b244*b378 + 2*b245*b290 - 2*
     b246*b270 + 2*b247*b248 - 2*b248*b254 + 2*b249*b278 + 2*b251*b285 - 2*b252
     *b253 - 2*b252*b313 + 2*b255*b256 + 2*b256*b271 - 2*b256*b331 - 2*b256*
     b332 - 2*b257*b258 - 2*b259*b260 + 2*b260*b296 - 2*b260*b306 - 2*b261*b325
      - 2*b261*b344 - 2*b262*b263 - 2*b264*b265 + 2*b265*b295 + 2*b265*b323 + 2
     *b266*b267 - 2*b266*b297 - 2*b267*b312 - 2*b270*b336 - 2*b271*b272 + 2*
     b272*b310 + 2*b272*b331 + 2*b273*b303 + 2*b273*b318 - 2*b275*b307 + 2*b276
     *b277 - 2*b276*b279 + 2*b277*b322 - 2*b277*b338 - 2*b278*b279 - 2*b278*
     b311 + 2*b279*b317 + 2*b280*b311 - 2*b280*b312 - 2*b281*b319 - 2*b282*b298
      + 2*b283*b284 - 2*b283*b286 + 2*b284*b316 - 2*b285*b286 - 2*b285*b304 - 2
     *b287*b303 + 2*b287*b304 - 2*b290*b299 - 2*b291*b292 - 2*b292*b364 - 2*
     b293*b316 + 2*b294*b309 - 2*b294*b352 - 2*b297*b328 + 2*b298*b342 - 2*b300
     *b360 - 2*b301*b309 - 2*b302*b355 - 2*b302*b357 - 2*b303*b317 - 2*b305*
     b306 + 2*b306*b347 + 2*b306*b374 - 2*b308*b354 + 2*b310*b356 - 2*b310*b375
      - 2*b311*b332 + 2*b312*b359 - 2*b314*b342 - 2*b315*b350 + 2*b317*b351 - 2
     *b317*b373 - 2*b318*b340 - 2*b323*b346 + 2*b324*b329 + 2*b327*b368 - 2*
     b329*b374 + 2*b330*b372 + 2*b335*b336 - 2*b335*b337 - 2*b336*b360 - 2*b339
     *b340 + 2*b340*b356 - 2*b341*b353 - 2*b343*b350 - 2*b344*b364 - 2*b345*
     b346 + 2*b346*b351 + 2*b347*b370 - 2*b351*b352 - 2*b356*b357 - 2*b358*b359
      + 2*b359*b373 - 2*b361*b362 + 2*b362*b375 - 2*b363*b366 - 2*b376*b377 + 2
     *b377*b378 + objvar =L= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;


Last updated: 2022-05-24 Git hash: 1198c186
Imprint / Privacy Policy / License: CC-BY 4.0