MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sporttournament30
This is a quadratic model for the max-cut problem. The instance arises when minimizing so-called breaks in sports tournaments.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 486.09562620 (ANTIGONE) 426.00000000 (BARON) 514.00000000 (COUENNE) 484.39350640 (CPLEX) 422.00000000 (GUROBI) 462.00000000 (LINDO) 424.52025680 (SCIP) 427.13510420 (SHOT) 425.04894820 (XPRESS) |
| Referencesⓘ | Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349. |
| Sourceⓘ | POLIP instance maxcut/sched-30-4711 |
| Applicationⓘ | Sports Tournament |
| Added to libraryⓘ | 26 Feb 2014 |
| Problem typeⓘ | MBQCP |
| #Variablesⓘ | 436 |
| #Binary Variablesⓘ | 435 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 435 |
| #Nonlinear Binary Variablesⓘ | 435 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | max |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 0 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 436 |
| #Nonlinear Nonzeros in Jacobianⓘ | 435 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1680 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 435 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 435 |
| Average blocksize in Hessian of Lagrangianⓘ | 435.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 4.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 1 0 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 436 1 435 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 436 1 435 0
*
* Solve m using MINLP maximizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207
,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220
,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233
,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246
,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259
,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272
,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285
,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298
,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310,b311
,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323,b324
,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336,b337
,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348,b349,b350
,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361,b362,b363
,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374,b375,b376
,b377,b378,b379,b380,b381,b382,b383,b384,b385,b386,b387,b388,b389
,b390,b391,b392,b393,b394,b395,b396,b397,b398,b399,b400,b401,b402
,b403,b404,b405,b406,b407,b408,b409,b410,b411,b412,b413,b414,b415
,b416,b417,b418,b419,b420,b421,b422,b423,b424,b425,b426,b427,b428
,b429,b430,b431,b432,b433,b434,b435,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205
,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218
,b219,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231
,b232,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244
,b245,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257
,b258,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270
,b271,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283
,b284,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296
,b297,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309
,b310,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322
,b323,b324,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335
,b336,b337,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348
,b349,b350,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361
,b362,b363,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374
,b375,b376,b377,b378,b379,b380,b381,b382,b383,b384,b385,b386,b387
,b388,b389,b390,b391,b392,b393,b394,b395,b396,b397,b398,b399,b400
,b401,b402,b403,b404,b405,b406,b407,b408,b409,b410,b411,b412,b413
,b414,b415,b416,b417,b418,b419,b420,b421,b422,b423,b424,b425,b426
,b427,b428,b429,b430,b431,b432,b433,b434,b435;
Equations e1;
e1.. 2*b1*b198 - 2*b1 - 2*b198 - 2*b1*b235 + 2*b235 + 2*b1*b280 + 2*b1*b294 + 2
*b2*b283 - 2*b2 - 2*b2*b316 + 2*b2*b317 + 2*b2*b318 + 2*b3*b51 - 2*b3 - 2*
b51 - 2*b3*b149 + 2*b149 + 2*b3*b178 + 2*b178 + 2*b3*b284 + 2*b4*b154 - 2*
b4 - 2*b154 + 2*b4*b253 - 4*b253 + 2*b4*b255 + 2*b255 - 2*b4*b348 + 2*b5*
b56 - 2*b5 - 2*b56 - 2*b5*b340 + 2*b5*b341 + 2*b5*b342 + 2*b6*b205 + 2*b6
- 2*b205 - 2*b6*b327 - 2*b6*b354 - 2*b6*b355 + 2*b7*b70 - 2*b7 - 2*b70 -
2*b7*b177 + 2*b177 + 2*b7*b289 + 2*b7*b290 + 2*b8*b56 - 2*b8 + 2*b8*b73 -
2*b73 - 2*b8*b351 + 2*b8*b352 + 2*b9*b86 - 2*b9 - 2*b86 - 2*b9*b213 + 2*
b213 + 2*b9*b283 + 2*b9*b299 + 2*b10*b73 - 2*b10 + 2*b10*b90 - 2*b90 - 2*
b10*b359 + 2*b10*b360 + 2*b11*b22 - 2*b11 - 2*b22 + 2*b11*b201 - 4*b201 +
2*b12*b18 - 2*b12 - 2*b18 - 2*b12*b149 + 2*b12*b250 - 2*b250 + 2*b12*b286
+ 2*b13*b90 - 2*b13 + 2*b13*b113 - 4*b113 + 2*b13*b134 - 2*b134 - 2*b13*
b369 - 2*b14*b177 + 2*b14 - 2*b14*b247 - 2*b247 - 2*b14*b314 + 2*b14*b316
+ 2*b15*b113 - 2*b15 + 2*b15*b135 - 4*b135 + 2*b15*b159 - 4*b159 - 2*b15*
b379 + 2*b16*b33 - 2*b16 - 2*b33 + 2*b16*b362 + 2*b17*b244 - 4*b17 - 4*
b244 + 2*b17*b287 + 2*b17*b323 + 2*b17*b387 + 2*b18*b84 - 2*b84 + 2*b18*
b126 - 4*b126 - 2*b18*b323 - 2*b19*b210 + 2*b19 - 2*b210 - 2*b19*b213 - 2*
b19*b304 + 2*b19*b307 + 2*b20*b135 - 4*b20 + 2*b20*b161 - 4*b161 + 2*b20*
b188 - 4*b188 + 2*b20*b379 - 2*b21*b73 - 2*b21 + 2*b21*b75 - 4*b75 + 2*b21
*b161 + 2*b21*b370 + 2*b22*b23 - 2*b23 - 2*b22*b61 - 2*b61 + 2*b22*b120 -
4*b120 + 2*b23*b45 - 2*b45 + 2*b24*b161 - 4*b24 + 2*b24*b190 - 4*b190 + 2*
b24*b224 - 4*b224 + 2*b24*b369 + 2*b25*b42 - 2*b25 - 2*b42 - 2*b25*b56 + 2
*b25*b92 - 4*b92 + 2*b25*b190 + 2*b26*b27 - 2*b26 - 2*b27 - 2*b26*b44 - 2*
b44 + 2*b26*b272 - 2*b272 + 2*b26*b380 + 2*b27*b62 - 4*b62 + 2*b28*b29 - 2
*b28 - 2*b29 + 2*b28*b52 - 2*b52 + 2*b28*b108 - 4*b108 - 2*b28*b319 + 2*
b29*b53 - 2*b53 - 2*b29*b155 - 2*b155 + 2*b29*b338 + 2*b30*b190 - 4*b30 +
2*b30*b226 - 4*b226 + 2*b30*b260 - 4*b260 + 2*b30*b359 + 2*b31*b58 - 2*b31
- 4*b58 + 2*b31*b115 - 4*b115 + 2*b31*b226 - 2*b31*b342 - 2*b32*b33 - 2*
b32 + 2*b32*b60 - 4*b60 + 2*b32*b79 - 4*b79 + 2*b32*b390 + 2*b33*b34 - 2*
b34 + 2*b33*b238 - 2*b238 + 2*b34*b79 + 2*b35*b36 - 2*b35 - 2*b36 - 2*b35*
b365 + 2*b35*b374 + 2*b35*b402 + 2*b36*b209 - 4*b209 - 2*b36*b296 + 2*b36*
b403 + 2*b37*b177 - 2*b37 + 2*b37*b296 + 2*b37*b317 - 2*b37*b366 + 2*b38*
b39 - 4*b38 - 4*b39 + 2*b38*b309 + 2*b38*b325 + 2*b38*b395 + 2*b39*b275 +
2*b39*b338 + 2*b39*b340 + 2*b40*b226 - 2*b40 + 2*b40*b262 - 2*b262 - 2*b40
*b275 + 2*b40*b351 + 2*b41*b75 - 4*b41 + 2*b41*b138 - 4*b138 + 2*b41*b262
+ 2*b41*b342 + 2*b42*b228 - 4*b228 - 2*b42*b267 + 2*b267 + 2*b42*b353 + 2
*b43*b44 - 2*b43 + 2*b43*b393 - 2*b43*b396 + 2*b43*b397 + 2*b44*b77 - 4*
b77 + 2*b44*b100 - 2*b100 + 2*b45*b46 - 2*b46 + 2*b45*b199 - 4*b199 - 2*
b45*b393 + 2*b46*b100 + 2*b47*b48 + 2*b47 - 2*b48 - 2*b47*b205 - 2*b47*
b383 - 2*b47*b385 + 2*b48*b49 - 2*b49 - 2*b48*b287 + 2*b48*b407 + 2*b49*
b246 - 4*b246 - 2*b49*b286 + 2*b49*b409 + 2*b50*b51 - 2*b50 + 2*b50*b149
+ 2*b50*b304 - 2*b50*b378 - 2*b51*b176 + 2*b176 + 2*b51*b410 + 2*b52*b54
- 4*b54 + 2*b52*b87 - 2*b87 - 2*b52*b157 + 4*b157 + 2*b53*b300 + 2*b53*
b320 - 2*b53*b399 + 2*b54*b55 + 2*b55 + 2*b54*b389 + 2*b54*b399 - 2*b55*
b221 + 2*b221 - 2*b55*b223 + 2*b223 - 2*b55*b275 + 2*b56*b57 - 2*b57 + 2*
b57*b92 + 2*b57*b164 - 4*b164 - 2*b57*b263 - 2*b263 + 2*b58*b93 - 4*b93 +
2*b58*b343 + 2*b58*b371 + 2*b59*b93 - 2*b59 + 2*b59*b276 + 2*b59*b280 - 2*
b59*b392 + 2*b60*b61 + 2*b60*b96 - 2*b96 + 2*b60*b396 + 2*b61*b97 - 4*b97
+ 2*b61*b121 - 2*b121 + 2*b62*b63 - 2*b63 + 2*b62*b239 - 4*b239 + 2*b62*
b393 + 2*b63*b121 + 2*b64*b66 - 2*b64 - 4*b66 + 2*b64*b334 + 2*b65*b145 -
2*b65 - 2*b145 + 2*b65*b173 - 2*b173 + 2*b65*b344 - 2*b65*b408 + 2*b66*
b205 + 2*b66*b401 + 2*b66*b408 + 2*b67*b68 - 4*b67 - 2*b68 + 2*b67*b174 -
2*b174 + 2*b67*b365 + 2*b67*b387 + 2*b68*b127 + 2*b127 - 2*b68*b281 + 2*
b68*b296 + 2*b69*b70 - 2*b69 - 2*b69*b105 + 2*b105 + 2*b69*b314 + 2*b69*
b316 + 2*b70*b128 - 2*b128 - 2*b70*b211 + 2*b211 + 2*b71*b107 - 4*b71 - 2*
b107 + 2*b71*b128 + 2*b71*b152 + 2*b152 + 2*b71*b297 - 2*b72*b311 + 2*b72
+ 2*b72*b341 - 2*b72*b359 - 2*b72*b414 + 2*b73*b74 - 2*b74 + 2*b74*b115
+ 2*b74*b192 - 4*b192 - 2*b74*b227 - 2*b227 + 2*b75*b267 + 2*b75*b332 + 2
*b76*b195 + 2*b76 + 2*b195 - 2*b76*b267 - 2*b76*b276 - 2*b76*b397 + 2*b77*
b78 - 2*b78 + 2*b77*b118 - 2*b118 + 2*b77*b391 + 2*b78*b119 - 4*b119 + 2*
b78*b144 - 2*b144 - 2*b78*b362 + 2*b79*b80 - 2*b80 + 2*b79*b273 - 4*b273
+ 2*b80*b144 + 2*b81*b206 + 2*b81 - 4*b206 - 2*b81*b335 - 2*b81*b402 - 2*
b81*b416 + 2*b82*b83 - 4*b82 - 2*b83 + 2*b82*b206 + 2*b82*b376 + 2*b82*
b394 + 2*b83*b105 - 2*b83*b279 + 2*b83*b304 + 2*b84*b86 - 2*b84*b127 + 2*
b84*b307 - 2*b85*b150 + 2*b85 - 2*b150 - 2*b85*b249 - 2*b249 - 2*b85*b297
+ 2*b85*b345 + 2*b86*b150 - 2*b86*b248 + 2*b248 + 2*b87*b182 - 2*b182 - 2
*b87*b219 + 2*b219 + 2*b87*b349 - 2*b88*b89 + 2*b88 + 2*b89 - 2*b88*b291
+ 2*b88*b302 - 2*b88*b389 + 2*b89*b352 - 2*b89*b369 - 2*b89*b418 + 2*b90*
b91 - 2*b91 - 2*b90*b371 + 2*b91*b138 - 2*b91*b191 - 2*b191 + 2*b91*b230
- 4*b230 + 2*b92*b94 - 2*b94 + 2*b92*b232 + 2*b232 + 2*b93*b95 - 4*b95 +
2*b93*b231 - 4*b231 + 2*b94*b95 + 2*b94*b230 - 2*b94*b326 + 2*b95*b96 + 2*
b95*b278 + 2*b96*b143 - 4*b143 - 2*b96*b293 + 2*b97*b99 - 4*b99 + 2*b97*
b142 - 2*b142 + 2*b97*b392 - 2*b98*b121 + 2*b98 + 2*b98*b170 - 4*b170 - 2*
b98*b277 - 2*b98*b285 + 2*b99*b143 + 2*b99*b170 + 2*b99*b362 + 2*b100*b101
- 2*b101 - 2*b100*b294 + 2*b101*b170 + 2*b102*b243 + 2*b102 - 4*b243 - 2*
b102*b328 - 2*b102*b398 - 2*b102*b419 + 2*b103*b104 - 4*b103 - 4*b104 + 2*
b103*b243 + 2*b103*b384 + 2*b103*b398 + 2*b104*b279 + 2*b104*b314 + 2*b104
*b378 - 2*b105*b248 - 2*b105*b384 - 2*b106*b215 - 2*b106 + 2*b215 + 2*b106
*b348 + 2*b106*b410 + 2*b106*b420 + 2*b107*b108 - 2*b107*b151 - 2*b151 + 2
*b107*b182 + 2*b108*b110 - 2*b110 + 2*b108*b348 - 2*b109*b185 - 2*b109 + 2
*b185 + 2*b109*b309 + 2*b109*b337 + 2*b109*b368 + 2*b110*b183 - 2*b183 + 2
*b110*b185 - 2*b110*b389 - 2*b111*b112 + 4*b111 + 2*b112 - 2*b111*b257 + 2
*b257 - 2*b111*b300 - 2*b111*b302 + 2*b112*b360 - 2*b112*b379 - 2*b112*
b422 + 2*b113*b114 - 2*b114 + 2*b113*b228 - 2*b114*b162 - 2*b162 + 2*b114*
b164 + 2*b114*b266 - 4*b266 + 2*b115*b116 - 4*b116 + 2*b115*b361 + 2*b116*
b266 + 2*b116*b326 + 2*b116*b415 - 2*b117*b118 + 2*b117 + 2*b117*b233 - 4*
b233 - 2*b117*b278 - 2*b117*b361 + 2*b118*b169 - 4*b169 + 2*b118*b415 + 2*
b119*b120 + 2*b119*b168 - 2*b168 + 2*b119*b397 + 2*b120*b169 + 2*b120*b200
- 4*b200 + 2*b121*b122 - 2*b122 + 2*b122*b200 + 2*b123*b124 + 2*b123 - 2*
b124 - 2*b123*b322 - 2*b123*b394 - 2*b123*b423 + 2*b124*b125 - 4*b125 - 2*
b124*b281 + 2*b124*b327 + 2*b125*b126 + 2*b125*b323 + 2*b125*b402 + 2*b126
*b281 + 2*b126*b366 - 2*b127*b211 - 2*b127*b323 + 2*b128*b129 - 2*b129 - 2
*b128*b308 - 2*b129*b252 + 2*b252 + 2*b129*b336 + 2*b129*b424 - 2*b130*
b290 + 2*b130 - 2*b130*b330 + 2*b130*b411 - 2*b130*b417 - 2*b131*b156 - 2*
b131 + 2*b156 + 2*b131*b300 + 2*b131*b330 + 2*b131*b358 + 2*b132*b156 - 2*
b132 + 2*b132*b217 - 2*b217 - 2*b132*b395 + 2*b132*b417 - 2*b133*b219 + 4*
b133 - 2*b133*b309 - 2*b133*b310 - 2*b133*b386 + 2*b134*b160 - 2*b160 - 2*
b134*b302 + 2*b134*b386 + 2*b135*b137 - 4*b137 + 2*b135*b371 + 2*b136*b137
- 4*b136 + 2*b136*b160 + 2*b136*b228 + 2*b136*b331 + 2*b137*b139 - 2*b139
+ 2*b137*b192 + 2*b138*b140 - 4*b140 + 2*b138*b353 + 2*b139*b140 + 2*b139
*b229 - 4*b229 - 2*b139*b276 + 2*b140*b194 + 2*b194 + 2*b140*b412 - 2*b141
*b142 + 2*b141 + 2*b141*b193 - 2*b193 - 2*b141*b235 - 2*b141*b353 + 2*b142
*b197 - 4*b197 + 2*b142*b412 + 2*b143*b196 - 2*b196 + 2*b143*b272 - 2*b144
*b198 + 2*b144*b427 + 2*b145*b146 - 4*b146 + 2*b146*b303 + 2*b146*b382 + 2
*b146*b388 + 2*b147*b245 - 2*b147 - 2*b245 - 2*b147*b279 + 2*b147*b333 + 2
*b147*b388 + 2*b148*b176 + 2*b148 - 2*b148*b287 - 2*b148*b356 - 2*b148*
b429 - 2*b149*b430 + 2*b150*b151 + 2*b150*b411 + 2*b151*b329 + 2*b151*b430
- 2*b152*b153 - 2*b153 - 2*b152*b299 - 2*b152*b337 + 2*b153*b155 + 2*b153
*b329 + 2*b153*b413 + 2*b154*b291 + 2*b154*b349 - 2*b154*b350 + 2*b155*
b254 - 2*b254 + 2*b155*b350 - 2*b156*b186 + 2*b186 - 2*b156*b426 - 2*b157*
b158 - 2*b158 - 2*b157*b185 - 2*b157*b320 + 2*b158*b159 + 2*b158*b369 + 2*
b158*b426 + 2*b159*b189 - 2*b189 + 2*b159*b302 + 2*b160*b162 - 2*b160*b360
+ 2*b161*b163 - 4*b163 + 2*b162*b163 + 2*b162*b189 + 2*b163*b165 - 4*b165
+ 2*b163*b230 + 2*b164*b166 - 4*b166 + 2*b164*b343 + 2*b165*b166 + 2*b165
*b265 - 4*b265 + 2*b165*b276 + 2*b166*b167 + 2*b167 + 2*b166*b406 - 2*b167
*b168 - 2*b167*b195 - 2*b167*b343 + 2*b168*b237 - 2*b237 + 2*b168*b406 + 2
*b169*b236 - 2*b236 + 2*b169*b238 + 2*b170*b432 - 2*b171*b313 + 2*b171 - 2
*b171*b423 - 2*b172*b303 + 4*b172 - 2*b172*b381 - 2*b172*b382 - 2*b172*
b383 + 2*b173*b175 - 4*b175 + 2*b173*b334 - 2*b173*b387 + 2*b174*b208 - 2*
b208 - 2*b174*b303 + 2*b174*b408 + 2*b175*b208 + 2*b175*b279 + 2*b175*b383
- 2*b176*b409 - 2*b176*b431 - 2*b177*b367 - 2*b178*b181 - 2*b181 - 2*b178
*b297 - 2*b178*b298 + 2*b179*b181 - 4*b179 + 2*b179*b252 + 2*b179*b367 + 2
*b179*b420 - 2*b180*b183 + 2*b180 + 2*b180*b251 - 4*b251 - 2*b180*b349 - 2
*b180*b411 + 2*b181*b183 + 2*b181*b324 - 2*b182*b184 - 2*b184 + 2*b182*
b298 + 2*b183*b184 + 2*b184*b339 + 2*b184*b395 - 2*b185*b422 - 2*b186*b187
- 2*b187 + 2*b186*b258 - 2*b258 - 2*b186*b325 + 2*b187*b188 + 2*b187*b359
+ 2*b187*b422 + 2*b188*b225 - 2*b225 + 2*b188*b310 + 2*b189*b191 - 2*b189
*b352 + 2*b190*b264 - 2*b264 + 2*b191*b225 + 2*b191*b264 + 2*b192*b193 + 2
*b192*b332 + 2*b193*b400 - 2*b193*b434 - 2*b194*b196 - 2*b194*b280 - 2*
b194*b332 - 2*b195*b271 - 2*b271 - 2*b195*b277 + 2*b196*b271 + 2*b196*b400
+ 2*b197*b199 + 2*b197*b270 - 4*b270 + 2*b197*b272 + 2*b198*b201 + 2*b198
*b277 + 2*b199*b201 + 2*b199*b271 + 2*b200*b202 - 2*b202 + 2*b200*b294 + 2
*b201*b202 - 2*b203*b322 + 2*b203 - 2*b203*b419 - 2*b204*b312 + 4*b204 - 2
*b204*b372 - 2*b204*b373 - 2*b204*b375 + 2*b205*b207 - 4*b207 + 2*b206*
b209 + 2*b206*b312 + 2*b207*b209 + 2*b207*b281 + 2*b207*b375 + 2*b208*b305
- 2*b208*b433 + 2*b209*b433 + 2*b210*b212 - 2*b212 + 2*b210*b376 + 2*b210
*b433 + 2*b211*b366 - 2*b211*b425 - 2*b212*b308 + 2*b212*b403 + 2*b212*
b425 + 2*b213*b356 - 2*b213*b357 + 2*b214*b215 - 4*b214 + 2*b214*b216 - 2*
b216 + 2*b214*b357 + 2*b214*b424 - 2*b215*b217 - 2*b215*b358 + 2*b216*b217
- 2*b216*b318 + 2*b216*b319 + 2*b217*b218 - 2*b218 + 2*b218*b220 - 2*b220
- 2*b218*b368 + 2*b218*b389 + 2*b219*b413 - 2*b219*b418 + 2*b220*b221 - 2
*b220*b301 + 2*b220*b418 - 2*b221*b222 - 2*b222 - 2*b221*b350 + 2*b222*
b224 + 2*b222*b351 + 2*b222*b418 - 2*b223*b261 - 2*b261 - 2*b223*b331 + 2*
b223*b399 + 2*b224*b261 + 2*b224*b320 + 2*b225*b227 - 2*b225*b341 + 2*b226
*b229 + 2*b227*b229 + 2*b227*b261 + 2*b228*b231 + 2*b229*b231 + 2*b230*
b233 + 2*b231*b233 - 2*b232*b234 - 2*b234 - 2*b232*b293 - 2*b232*b370 + 2*
b233*b234 + 2*b234*b236 + 2*b234*b396 + 2*b235*b293 - 2*b235*b295 + 2*b236
*b295 - 2*b236*b326 + 2*b237*b238 + 2*b237*b239 - 2*b237*b280 - 2*b238*
b274 + 2*b274 + 2*b239*b274 + 2*b239*b295 - 2*b240*b328 + 2*b240 - 2*b240*
b416 - 2*b241*b242 + 4*b241 - 2*b242 - 2*b241*b321 - 2*b241*b363 - 2*b241*
b364 + 2*b242*b244 + 2*b242*b374 + 2*b242*b416 + 2*b243*b246 + 2*b243*b321
+ 2*b244*b246 + 2*b244*b303 + 2*b245*b315 + 2*b245*b407 - 2*b245*b429 + 2
*b246*b429 + 2*b247*b249 + 2*b247*b384 + 2*b247*b429 + 2*b248*b378 - 2*
b248*b421 + 2*b249*b409 + 2*b249*b421 + 2*b250*b297 + 2*b250*b345 - 2*b250
*b347 + 2*b251*b253 + 2*b251*b347 + 2*b251*b430 - 2*b252*b254 - 2*b252*
b368 + 2*b253*b254 + 2*b253*b318 + 2*b254*b256 - 2*b256 - 2*b255*b258 - 2*
b255*b309 - 2*b255*b324 + 2*b256*b257 + 2*b256*b258 - 2*b256*b358 - 2*b257
*b413 - 2*b257*b414 + 2*b258*b414 + 2*b259*b260 - 2*b259 - 2*b259*b338 + 2
*b259*b340 + 2*b259*b414 + 2*b260*b325 + 2*b260*b405 + 2*b261*b263 + 2*
b262*b265 - 2*b262*b405 + 2*b263*b265 + 2*b263*b405 + 2*b264*b266 - 2*b264
*b434 + 2*b265*b434 + 2*b266*b268 - 4*b268 - 2*b267*b269 - 2*b269 + 2*b268
*b269 + 2*b268*b293 + 2*b268*b434 + 2*b269*b270 + 2*b269*b391 + 2*b270*
b285 + 2*b270*b326 + 2*b271*b273 - 2*b272*b428 + 2*b273*b285 + 2*b273*b428
- 2*b274*b432 - 2*b274*b435 + 2*b275*b331 + 2*b277*b278 - 2*b278*b285 - 2
*b282*b283 + 2*b282*b284 - 2*b282*b349 + 2*b282*b358 - 2*b283*b336 - 2*
b284*b347 - 2*b284*b348 + 2*b286*b287 - 2*b286*b356 - 2*b288*b289 + 2*b288
*b290 - 2*b288*b337 + 2*b288*b368 + 2*b289*b306 - 2*b289*b329 - 2*b290*
b357 - 2*b291*b292 + 2*b291*b311 + 2*b292*b319 + 2*b292*b337 - 2*b292*b339
- 2*b294*b295 - 2*b296*b345 + 2*b298*b299 - 2*b298*b330 - 2*b299*b367 - 2
*b300*b301 + 2*b301*b324 + 2*b301*b330 - 2*b304*b305 + 2*b305*b377 - 2*
b305*b403 - 2*b306*b307 + 2*b306*b308 - 2*b306*b318 - 2*b307*b420 + 2*b308
*b356 + 2*b310*b311 - 2*b310*b360 - 2*b311*b395 + 2*b312*b313 - 2*b312*
b407 + 2*b313*b381 - 2*b313*b388 - 2*b314*b315 + 2*b315*b385 - 2*b315*b409
- 2*b316*b424 - 2*b317*b404 - 2*b317*b410 - 2*b319*b336 - 2*b320*b352 + 2
*b321*b322 - 2*b321*b402 + 2*b322*b372 - 2*b324*b329 - 2*b325*b341 + 2*
b327*b328 - 2*b327*b398 + 2*b328*b363 - 2*b331*b342 - 2*b332*b415 - 2*b333
*b334 + 2*b333*b335 - 2*b333*b394 - 2*b334*b344 + 2*b335*b354 - 2*b335*
b401 + 2*b336*b417 - 2*b338*b339 + 2*b339*b422 - 2*b340*b405 - 2*b343*b412
- 2*b345*b346 + 2*b346*b365 + 2*b346*b404 - 2*b346*b433 + 2*b347*b421 + 2
*b350*b426 - 2*b351*b399 - 2*b353*b406 + 2*b355*b416 + 2*b357*b425 + 2*
b361*b370 - 2*b361*b400 - 2*b362*b380 + 2*b364*b419 - 2*b365*b366 + 2*b367
*b431 - 2*b370*b371 + 2*b373*b423 - 2*b374*b375 - 2*b374*b377 + 2*b375*
b419 - 2*b376*b377 - 2*b376*b378 + 2*b377*b398 + 2*b379*b386 + 2*b383*b423
- 2*b384*b385 + 2*b385*b394 - 2*b386*b426 - 2*b387*b388 - 2*b390*b391 + 2
*b390*b392 - 2*b390*b393 - 2*b391*b406 - 2*b392*b412 - 2*b396*b400 - 2*
b397*b415 - 2*b403*b404 + 2*b404*b431 - 2*b407*b408 - 2*b410*b411 - 2*b413
*b417 - 2*b420*b421 - 2*b424*b425 - 2*b427*b428 + 2*b428*b435 - 2*b430*
b431 + objvar =L= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

