MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance squfl010-025

Separable quadratic uncapacitated facility location problem.
A set of customers, each having unit demand, has to be satisfied by open facilities. The objective is to minimize the sum of the fixed cost for operating facilities and the shipping cost which is proportional to the square of the quantity delivered to each customer.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
214.11099520 p1 ( gdx sol )
(infeas: 2e-16)
Other points (infeas > 1e-08)  
Dual Bounds
-346.48930030 (ALPHAECP)
214.10959660 (ANTIGONE)
214.11095230 (BARON)
214.11095240 (BONMIN)
214.11088110 (COUENNE)
214.11095250 (CPLEX)
214.11095250 (GUROBI)
214.11095250 (LINDO)
214.11095250 (SCIP)
214.11095250 (SHOT)
References Günlük, Oktay, Lee, Jon, and Weismantel, Robert, MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL, Tech. Rep. RC24213, IBM Research, 2007.
Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205.
Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89.
Application Facility Location
Added to library 24 Feb 2014
Problem type MBQP
#Variables 260
#Binary Variables 10
#Integer Variables 0
#Nonlinear Variables 250
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 260
#Nonlinear Nonzeros in Objective 250
#Constraints 275
#Linear Constraints 275
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 750
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 250
#Nonzeros in Diagonal of Hessian of Lagrangian 250
#Blocks in Hessian of Lagrangian 250
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 9.9000e+01
Infeasibility of initial point 1
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        276       26        0      250        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        261      251       10        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*       1011      761      250        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
          ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
          ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
          ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
          ,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233
          ,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246
          ,x247,x248,x249,x250,b251,b252,b253,b254,b255,b256,b257,b258,b259
          ,b260,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
          ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
          ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
          ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85
          ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101
          ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114
          ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127
          ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140
          ,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153
          ,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166
          ,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179
          ,x180,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192
          ,x193,x194,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205
          ,x206,x207,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218
          ,x219,x220,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231
          ,x232,x233,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244
          ,x245,x246,x247,x248,x249,x250;

Binary Variables  b251,b252,b253,b254,b255,b256,b257,b258,b259,b260;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
          ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
          ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
          ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
          ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
          ,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259
          ,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272
          ,e273,e274,e275,e276;


e1.. -(23.5458254446414*x1*x1 + 18.979955090698*x2*x2 + 40.4475389896435*x3*x3
      + 32.3871907368369*x4*x4 + 5.87832983721956*x5*x5 + 27.7861809155978*x6*
     x6 + 29.0093260544642*x7*x7 + 27.8172341004716*x8*x8 + 23.8990137163284*x9
     *x9 + 31.1572073885704*x10*x10 + 13.2824851151917*x11*x11 + 
     33.2405661163705*x12*x12 + 11.9226979325457*x13*x13 + 20.4359563497062*x14
     *x14 + 24.448648939004*x15*x15 + 18.4191355125177*x16*x16 + 
     39.1206587833304*x17*x17 + 10.0203431071565*x18*x18 + 19.3631588126017*x19
     *x19 + 23.3360726377184*x20*x20 + 28.9471017656799*x21*x21 + 
     11.4841952994712*x22*x22 + 6.08794717116601*x23*x23 + 23.4037893982626*x24
     *x24 + 23.6180996877181*x25*x25 + 30.4354193350913*x26*x26 + 
     40.4712603455849*x27*x27 + 36.2213094971555*x28*x28 + 5.60976290451329*x29
     *x29 + 23.1725988276517*x30*x30 + 20.1796238073169*x31*x31 + 
     4.57861955410779*x32*x32 + 30.5653982993017*x33*x33 + 50.4967526356669*x34
     *x34 + 8.28478358470783*x35*x35 + 25.018545195819*x36*x36 + 
     12.6329611025149*x37*x37 + 27.6454711698144*x38*x38 + 33.9905967791569*x39
     *x39 + 6.07228540920208*x40*x40 + 37.4354673126797*x41*x41 + 
     37.4709444132233*x42*x42 + 35.7354026371941*x43*x43 + 22.4419684331029*x44
     *x44 + 32.5374941409*x45*x45 + 15.9337490518623*x46*x46 + 39.6539821536571
     *x47*x47 + 34.007214287844*x48*x48 + 31.9891521836171*x49*x49 + 
     11.3076337580825*x50*x50 + 48.8107919790236*x51*x51 + 16.5702835116504*x52
     *x52 + 17.1831503223043*x53*x53 + 35.1142641830025*x54*x54 + 
     29.1350141677348*x55*x55 + 47.6949431536515*x56*x56 + 32.149139849139*x57*
     x57 + 52.2374267154665*x58*x58 + 29.9609434870647*x59*x59 + 
     42.6183607184712*x60*x60 + 38.2238650857062*x61*x61 + 29.3601737959953*x62
     *x62 + 15.0635022726005*x63*x63 + 47.0245320338646*x64*x64 + 
     29.0759225713501*x65*x65 + 13.0424768501865*x66*x66 + 14.4753873350758*x67
     *x67 + 22.3704949637257*x68*x68 + 42.3038766759241*x69*x69 + 
     49.2326533720743*x70*x70 + 46.1780910030554*x71*x71 + 29.881771182396*x72*
     x72 + 30.5553734434501*x73*x73 + 3.7922842075966*x74*x74 + 39.37658717414*
     x75*x75 + 38.4041161777079*x76*x76 + 25.9812660558023*x77*x77 + 
     20.5750893036448*x78*x78 + 18.2591550063973*x79*x79 + 21.315708405139*x80*
     x80 + 33.6312833302058*x81*x81 + 15.2250454251428*x82*x82 + 
     40.6998421656809*x83*x83 + 38.4406211511874*x84*x84 + 26.1744753218587*x85
     *x85 + 28.8520619191213*x86*x86 + 13.6877901486106*x87*x87 + 
     14.6611183170587*x88*x88 + 38.8217787386064*x89*x89 + 12.3633235324976*x90
     *x90 + 22.2787064512218*x91*x91 + 20.7514901250986*x92*x92 + 
     25.2034704837712*x93*x93 + 30.6376270730567*x94*x94 + 39.5843101734575*x95
     *x95 + 31.1038558069605*x96*x96 + 31.6979288753493*x97*x97 + 
     28.645307801904*x98*x98 + 14.1025463900177*x99*x99 + 24.4462384012991*x100
     *x100 + 23.9588130600444*x101*x101 + 37.2092218308638*x102*x102 + 
     38.9284967423033*x103*x103 + 12.2912287240524*x104*x104 + 17.3040001983168
     *x105*x105 + 15.1907239390981*x106*x106 + 10.214640056875*x107*x107 + 
     24.5444413988224*x108*x108 + 45.991792998601*x109*x109 + 8.80808064222724*
     x110*x110 + 18.2698135895014*x111*x111 + 18.0129352025772*x112*x112 + 
     24.5906708393765*x113*x113 + 27.2479130814562*x114*x114 + 8.14284930897828
     *x115*x115 + 34.6101764845155*x116*x116 + 39.6172338889732*x117*x117 + 
     31.2334618018089*x118*x118 + 15.8448912894477*x119*x119 + 25.9622870070524
     *x120*x120 + 12.0380295338836*x121*x121 + 34.2734923291195*x122*x122 + 
     28.2417522551125*x123*x123 + 31.2100255255497*x124*x124 + 5.69874151661421
     *x125*x125 + 20.1924959476585*x126*x126 + 25.1047390556883*x127*x127 + 
     50.8540191789234*x128*x128 + 40.7654848119428*x129*x129 + 13.1660129719096
     *x130*x130 + 29.3477563113135*x131*x131 + 37.623504079514*x132*x132 + 
     25.0512445521536*x133*x133 + 24.194699080593*x134*x134 + 36.8817798615649*
     x135*x135 + 13.4670522383906*x136*x136 + 42.8355399696766*x137*x137 + 
     21.9449104264389*x138*x138 + 14.6179503747045*x139*x139 + 33.2656663596617
     *x140*x140 + 25.9752193871067*x141*x141 + 49.3747299640844*x142*x142 + 
     15.5177231557714*x143*x143 + 19.9897426371933*x144*x144 + 18.8657675463725
     *x145*x145 + 32.1150351106216*x146*x146 + 10.6354802846521*x147*x147 + 
     6.03289686797428*x148*x148 + 33.2130951842154*x149*x149 + 28.5459989363559
     *x150*x150 + 27.1814982971647*x151*x151 + 17.4732774311302*x152*x152 + 
     45.7430205440514*x153*x153 + 41.078689482825*x154*x154 + 14.0894075046248*
     x155*x155 + 34.4518041752158*x156*x156 + 37.6827979486941*x157*x157 + 
     31.9402692210917*x158*x158 + 17.176342113498*x159*x159 + 39.5175600805753*
     x160*x160 + 18.6428109082815*x161*x161 + 41.5887207579041*x162*x162 + 
     16.8382070886681*x163*x163 + 22.1667280473665*x164*x164 + 33.1071436309494
     *x165*x165 + 18.7491083157469*x166*x166 + 43.8897007571818*x167*x167 + 
     8.18685938107562*x168*x168 + 25.3225669621538*x169*x169 + 26.1676213722903
     *x170*x170 + 36.3794013637756*x171*x171 + 3.36357996902708*x172*x172 + 
     3.41423836465036*x173*x173 + 27.3030303493034*x174*x174 + 31.6570416640525
     *x175*x175 + 29.2490776122094*x176*x176 + 47.155909768506*x177*x177 + 
     43.747688859322*x178*x178 + 10.7493671026891*x179*x179 + 27.3502033243542*
     x180*x180 + 16.7299902035031*x181*x181 + 11.8402360490836*x182*x182 + 
     28.1306173784301*x183*x183 + 56.2444171745252*x184*x184 + 2.57815337422008
     *x185*x185 + 26.6018920054246*x186*x186 + 19.1214185252706*x187*x187 + 
     34.3953781800726*x188*x188 + 34.0930847416161*x189*x189 + 13.8204269927978
     *x190*x190 + 44.358450354143*x191*x191 + 45.1466792975147*x192*x192 + 
     41.4784118603196*x193*x193 + 22.1771123969423*x194*x194 + 31.6502071872129
     *x195*x195 + 11.7484412314793*x196*x196 + 44.4308470618447*x197*x197 + 
     38.2511037822993*x198*x198 + 39.6390015319532*x199*x199 + 10.8473239818109
     *x200*x200 + 32.7864705333551*x201*x201 + 10.2391421240902*x202*x202 + 
     39.5607896432743*x203*x203 + 39.8410872942397*x204*x204 + 15.9484846229643
     *x205*x205 + 37.9732738105522*x206*x206 + 36.3288913334737*x207*x207 + 
     37.3308942844016*x208*x208 + 14.138807380771*x209*x209 + 40.5225760141947*
     x210*x210 + 23.0942213546361*x211*x211 + 38.8745557957034*x212*x212 + 
     11.721117960742*x213*x213 + 28.5280949777182*x214*x214 + 31.7525052480902*
     x215*x215 + 11.4257984420683*x216*x216 + 37.4452338564339*x217*x217 + 
     1.12488644365266*x218*x218 + 29.4353246473701*x219*x219 + 32.1453138866363
     *x220*x220 + 39.0350080216973*x221*x221 + 6.46693171499145*x222*x222 + 
     9.11562848937319*x223*x223 + 20.7606750347532*x224*x224 + 33.4319480801873
     *x225*x225 + 28.1441444643013*x226*x226 + 34.4021397840332*x227*x227 + 
     33.6749639035632*x228*x228 + 10.1168794661545*x229*x229 + 17.6213921739784
     *x230*x230 + 20.3933915426277*x231*x231 + 6.98038357032972*x232*x232 + 
     29.2368220177179*x233*x233 + 44.3389168003468*x234*x234 + 12.4614270571251
     *x235*x235 + 20.9897984897617*x236*x236 + 13.7049805915567*x237*x237 + 
     21.5807687963342*x238*x238 + 30.6259335202425*x239*x239 + 3.25199498753833
     *x240*x240 + 31.4568158826796*x241*x241 + 34.4026496483618*x242*x242 + 
     29.5859985016407*x243*x243 + 19.9367729999238*x244*x244 + 29.9359444021784
     *x245*x245 + 17.2658241038544*x246*x246 + 33.6872082476686*x247*x247 + 
     28.2574825233421*x248*x248 + 26.807114591537*x249*x249 + 10.9132753163671*
     x250*x250) - 31*b251 - 99*b252 - 59*b253 - 85*b254 - 31*b255 - 18*b256
      - 55*b257 - 56*b258 - 2*b259 - 42*b260 + objvar =E= 0;

e2..    x1 - b251 =L= 0;

e3..    x2 - b251 =L= 0;

e4..    x3 - b251 =L= 0;

e5..    x4 - b251 =L= 0;

e6..    x5 - b251 =L= 0;

e7..    x6 - b251 =L= 0;

e8..    x7 - b251 =L= 0;

e9..    x8 - b251 =L= 0;

e10..    x9 - b251 =L= 0;

e11..    x10 - b251 =L= 0;

e12..    x11 - b251 =L= 0;

e13..    x12 - b251 =L= 0;

e14..    x13 - b251 =L= 0;

e15..    x14 - b251 =L= 0;

e16..    x15 - b251 =L= 0;

e17..    x16 - b251 =L= 0;

e18..    x17 - b251 =L= 0;

e19..    x18 - b251 =L= 0;

e20..    x19 - b251 =L= 0;

e21..    x20 - b251 =L= 0;

e22..    x21 - b251 =L= 0;

e23..    x22 - b251 =L= 0;

e24..    x23 - b251 =L= 0;

e25..    x24 - b251 =L= 0;

e26..    x25 - b251 =L= 0;

e27..    x26 - b252 =L= 0;

e28..    x27 - b252 =L= 0;

e29..    x28 - b252 =L= 0;

e30..    x29 - b252 =L= 0;

e31..    x30 - b252 =L= 0;

e32..    x31 - b252 =L= 0;

e33..    x32 - b252 =L= 0;

e34..    x33 - b252 =L= 0;

e35..    x34 - b252 =L= 0;

e36..    x35 - b252 =L= 0;

e37..    x36 - b252 =L= 0;

e38..    x37 - b252 =L= 0;

e39..    x38 - b252 =L= 0;

e40..    x39 - b252 =L= 0;

e41..    x40 - b252 =L= 0;

e42..    x41 - b252 =L= 0;

e43..    x42 - b252 =L= 0;

e44..    x43 - b252 =L= 0;

e45..    x44 - b252 =L= 0;

e46..    x45 - b252 =L= 0;

e47..    x46 - b252 =L= 0;

e48..    x47 - b252 =L= 0;

e49..    x48 - b252 =L= 0;

e50..    x49 - b252 =L= 0;

e51..    x50 - b252 =L= 0;

e52..    x51 - b253 =L= 0;

e53..    x52 - b253 =L= 0;

e54..    x53 - b253 =L= 0;

e55..    x54 - b253 =L= 0;

e56..    x55 - b253 =L= 0;

e57..    x56 - b253 =L= 0;

e58..    x57 - b253 =L= 0;

e59..    x58 - b253 =L= 0;

e60..    x59 - b253 =L= 0;

e61..    x60 - b253 =L= 0;

e62..    x61 - b253 =L= 0;

e63..    x62 - b253 =L= 0;

e64..    x63 - b253 =L= 0;

e65..    x64 - b253 =L= 0;

e66..    x65 - b253 =L= 0;

e67..    x66 - b253 =L= 0;

e68..    x67 - b253 =L= 0;

e69..    x68 - b253 =L= 0;

e70..    x69 - b253 =L= 0;

e71..    x70 - b253 =L= 0;

e72..    x71 - b253 =L= 0;

e73..    x72 - b253 =L= 0;

e74..    x73 - b253 =L= 0;

e75..    x74 - b253 =L= 0;

e76..    x75 - b253 =L= 0;

e77..    x76 - b254 =L= 0;

e78..    x77 - b254 =L= 0;

e79..    x78 - b254 =L= 0;

e80..    x79 - b254 =L= 0;

e81..    x80 - b254 =L= 0;

e82..    x81 - b254 =L= 0;

e83..    x82 - b254 =L= 0;

e84..    x83 - b254 =L= 0;

e85..    x84 - b254 =L= 0;

e86..    x85 - b254 =L= 0;

e87..    x86 - b254 =L= 0;

e88..    x87 - b254 =L= 0;

e89..    x88 - b254 =L= 0;

e90..    x89 - b254 =L= 0;

e91..    x90 - b254 =L= 0;

e92..    x91 - b254 =L= 0;

e93..    x92 - b254 =L= 0;

e94..    x93 - b254 =L= 0;

e95..    x94 - b254 =L= 0;

e96..    x95 - b254 =L= 0;

e97..    x96 - b254 =L= 0;

e98..    x97 - b254 =L= 0;

e99..    x98 - b254 =L= 0;

e100..    x99 - b254 =L= 0;

e101..    x100 - b254 =L= 0;

e102..    x101 - b255 =L= 0;

e103..    x102 - b255 =L= 0;

e104..    x103 - b255 =L= 0;

e105..    x104 - b255 =L= 0;

e106..    x105 - b255 =L= 0;

e107..    x106 - b255 =L= 0;

e108..    x107 - b255 =L= 0;

e109..    x108 - b255 =L= 0;

e110..    x109 - b255 =L= 0;

e111..    x110 - b255 =L= 0;

e112..    x111 - b255 =L= 0;

e113..    x112 - b255 =L= 0;

e114..    x113 - b255 =L= 0;

e115..    x114 - b255 =L= 0;

e116..    x115 - b255 =L= 0;

e117..    x116 - b255 =L= 0;

e118..    x117 - b255 =L= 0;

e119..    x118 - b255 =L= 0;

e120..    x119 - b255 =L= 0;

e121..    x120 - b255 =L= 0;

e122..    x121 - b255 =L= 0;

e123..    x122 - b255 =L= 0;

e124..    x123 - b255 =L= 0;

e125..    x124 - b255 =L= 0;

e126..    x125 - b255 =L= 0;

e127..    x126 - b256 =L= 0;

e128..    x127 - b256 =L= 0;

e129..    x128 - b256 =L= 0;

e130..    x129 - b256 =L= 0;

e131..    x130 - b256 =L= 0;

e132..    x131 - b256 =L= 0;

e133..    x132 - b256 =L= 0;

e134..    x133 - b256 =L= 0;

e135..    x134 - b256 =L= 0;

e136..    x135 - b256 =L= 0;

e137..    x136 - b256 =L= 0;

e138..    x137 - b256 =L= 0;

e139..    x138 - b256 =L= 0;

e140..    x139 - b256 =L= 0;

e141..    x140 - b256 =L= 0;

e142..    x141 - b256 =L= 0;

e143..    x142 - b256 =L= 0;

e144..    x143 - b256 =L= 0;

e145..    x144 - b256 =L= 0;

e146..    x145 - b256 =L= 0;

e147..    x146 - b256 =L= 0;

e148..    x147 - b256 =L= 0;

e149..    x148 - b256 =L= 0;

e150..    x149 - b256 =L= 0;

e151..    x150 - b256 =L= 0;

e152..    x151 - b257 =L= 0;

e153..    x152 - b257 =L= 0;

e154..    x153 - b257 =L= 0;

e155..    x154 - b257 =L= 0;

e156..    x155 - b257 =L= 0;

e157..    x156 - b257 =L= 0;

e158..    x157 - b257 =L= 0;

e159..    x158 - b257 =L= 0;

e160..    x159 - b257 =L= 0;

e161..    x160 - b257 =L= 0;

e162..    x161 - b257 =L= 0;

e163..    x162 - b257 =L= 0;

e164..    x163 - b257 =L= 0;

e165..    x164 - b257 =L= 0;

e166..    x165 - b257 =L= 0;

e167..    x166 - b257 =L= 0;

e168..    x167 - b257 =L= 0;

e169..    x168 - b257 =L= 0;

e170..    x169 - b257 =L= 0;

e171..    x170 - b257 =L= 0;

e172..    x171 - b257 =L= 0;

e173..    x172 - b257 =L= 0;

e174..    x173 - b257 =L= 0;

e175..    x174 - b257 =L= 0;

e176..    x175 - b257 =L= 0;

e177..    x176 - b258 =L= 0;

e178..    x177 - b258 =L= 0;

e179..    x178 - b258 =L= 0;

e180..    x179 - b258 =L= 0;

e181..    x180 - b258 =L= 0;

e182..    x181 - b258 =L= 0;

e183..    x182 - b258 =L= 0;

e184..    x183 - b258 =L= 0;

e185..    x184 - b258 =L= 0;

e186..    x185 - b258 =L= 0;

e187..    x186 - b258 =L= 0;

e188..    x187 - b258 =L= 0;

e189..    x188 - b258 =L= 0;

e190..    x189 - b258 =L= 0;

e191..    x190 - b258 =L= 0;

e192..    x191 - b258 =L= 0;

e193..    x192 - b258 =L= 0;

e194..    x193 - b258 =L= 0;

e195..    x194 - b258 =L= 0;

e196..    x195 - b258 =L= 0;

e197..    x196 - b258 =L= 0;

e198..    x197 - b258 =L= 0;

e199..    x198 - b258 =L= 0;

e200..    x199 - b258 =L= 0;

e201..    x200 - b258 =L= 0;

e202..    x201 - b259 =L= 0;

e203..    x202 - b259 =L= 0;

e204..    x203 - b259 =L= 0;

e205..    x204 - b259 =L= 0;

e206..    x205 - b259 =L= 0;

e207..    x206 - b259 =L= 0;

e208..    x207 - b259 =L= 0;

e209..    x208 - b259 =L= 0;

e210..    x209 - b259 =L= 0;

e211..    x210 - b259 =L= 0;

e212..    x211 - b259 =L= 0;

e213..    x212 - b259 =L= 0;

e214..    x213 - b259 =L= 0;

e215..    x214 - b259 =L= 0;

e216..    x215 - b259 =L= 0;

e217..    x216 - b259 =L= 0;

e218..    x217 - b259 =L= 0;

e219..    x218 - b259 =L= 0;

e220..    x219 - b259 =L= 0;

e221..    x220 - b259 =L= 0;

e222..    x221 - b259 =L= 0;

e223..    x222 - b259 =L= 0;

e224..    x223 - b259 =L= 0;

e225..    x224 - b259 =L= 0;

e226..    x225 - b259 =L= 0;

e227..    x226 - b260 =L= 0;

e228..    x227 - b260 =L= 0;

e229..    x228 - b260 =L= 0;

e230..    x229 - b260 =L= 0;

e231..    x230 - b260 =L= 0;

e232..    x231 - b260 =L= 0;

e233..    x232 - b260 =L= 0;

e234..    x233 - b260 =L= 0;

e235..    x234 - b260 =L= 0;

e236..    x235 - b260 =L= 0;

e237..    x236 - b260 =L= 0;

e238..    x237 - b260 =L= 0;

e239..    x238 - b260 =L= 0;

e240..    x239 - b260 =L= 0;

e241..    x240 - b260 =L= 0;

e242..    x241 - b260 =L= 0;

e243..    x242 - b260 =L= 0;

e244..    x243 - b260 =L= 0;

e245..    x244 - b260 =L= 0;

e246..    x245 - b260 =L= 0;

e247..    x246 - b260 =L= 0;

e248..    x247 - b260 =L= 0;

e249..    x248 - b260 =L= 0;

e250..    x249 - b260 =L= 0;

e251..    x250 - b260 =L= 0;

e252..    x1 + x26 + x51 + x76 + x101 + x126 + x151 + x176 + x201 + x226 =E= 1;

e253..    x2 + x27 + x52 + x77 + x102 + x127 + x152 + x177 + x202 + x227 =E= 1;

e254..    x3 + x28 + x53 + x78 + x103 + x128 + x153 + x178 + x203 + x228 =E= 1;

e255..    x4 + x29 + x54 + x79 + x104 + x129 + x154 + x179 + x204 + x229 =E= 1;

e256..    x5 + x30 + x55 + x80 + x105 + x130 + x155 + x180 + x205 + x230 =E= 1;

e257..    x6 + x31 + x56 + x81 + x106 + x131 + x156 + x181 + x206 + x231 =E= 1;

e258..    x7 + x32 + x57 + x82 + x107 + x132 + x157 + x182 + x207 + x232 =E= 1;

e259..    x8 + x33 + x58 + x83 + x108 + x133 + x158 + x183 + x208 + x233 =E= 1;

e260..    x9 + x34 + x59 + x84 + x109 + x134 + x159 + x184 + x209 + x234 =E= 1;

e261..    x10 + x35 + x60 + x85 + x110 + x135 + x160 + x185 + x210 + x235 =E= 1
       ;

e262..    x11 + x36 + x61 + x86 + x111 + x136 + x161 + x186 + x211 + x236 =E= 1
       ;

e263..    x12 + x37 + x62 + x87 + x112 + x137 + x162 + x187 + x212 + x237 =E= 1
       ;

e264..    x13 + x38 + x63 + x88 + x113 + x138 + x163 + x188 + x213 + x238 =E= 1
       ;

e265..    x14 + x39 + x64 + x89 + x114 + x139 + x164 + x189 + x214 + x239 =E= 1
       ;

e266..    x15 + x40 + x65 + x90 + x115 + x140 + x165 + x190 + x215 + x240 =E= 1
       ;

e267..    x16 + x41 + x66 + x91 + x116 + x141 + x166 + x191 + x216 + x241 =E= 1
       ;

e268..    x17 + x42 + x67 + x92 + x117 + x142 + x167 + x192 + x217 + x242 =E= 1
       ;

e269..    x18 + x43 + x68 + x93 + x118 + x143 + x168 + x193 + x218 + x243 =E= 1
       ;

e270..    x19 + x44 + x69 + x94 + x119 + x144 + x169 + x194 + x219 + x244 =E= 1
       ;

e271..    x20 + x45 + x70 + x95 + x120 + x145 + x170 + x195 + x220 + x245 =E= 1
       ;

e272..    x21 + x46 + x71 + x96 + x121 + x146 + x171 + x196 + x221 + x246 =E= 1
       ;

e273..    x22 + x47 + x72 + x97 + x122 + x147 + x172 + x197 + x222 + x247 =E= 1
       ;

e274..    x23 + x48 + x73 + x98 + x123 + x148 + x173 + x198 + x223 + x248 =E= 1
       ;

e275..    x24 + x49 + x74 + x99 + x124 + x149 + x174 + x199 + x224 + x249 =E= 1
       ;

e276..    x25 + x50 + x75 + x100 + x125 + x150 + x175 + x200 + x225 + x250
        =E= 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-05-24 Git hash: 1198c186
Imprint / Privacy Policy / License: CC-BY 4.0