MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance squfl010-025
Separable quadratic uncapacitated facility location problem. A set of customers, each having unit demand, has to be satisfied by open facilities. The objective is to minimize the sum of the fixed cost for operating facilities and the shipping cost which is proportional to the square of the quantity delivered to each customer.
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -346.48930030 (ALPHAECP) 214.10959660 (ANTIGONE) 214.11095230 (BARON) 214.11095240 (BONMIN) 214.11088110 (COUENNE) 214.11095250 (CPLEX) 214.11095250 (GUROBI) 214.11095250 (LINDO) 214.11095250 (SCIP) 214.11095250 (SHOT) |
| Referencesⓘ | Günlük, Oktay, Lee, Jon, and Weismantel, Robert, MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL, Tech. Rep. RC24213, IBM Research, 2007. Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205. Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89. |
| Applicationⓘ | Facility Location |
| Added to libraryⓘ | 24 Feb 2014 |
| Problem typeⓘ | MBQP |
| #Variablesⓘ | 260 |
| #Binary Variablesⓘ | 10 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 250 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 260 |
| #Nonlinear Nonzeros in Objectiveⓘ | 250 |
| #Constraintsⓘ | 275 |
| #Linear Constraintsⓘ | 275 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 750 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 250 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 250 |
| #Blocks in Hessian of Lagrangianⓘ | 250 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e+00 |
| Maximal coefficientⓘ | 9.9000e+01 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 276 26 0 250 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 261 251 10 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 1011 761 250 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233
,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246
,x247,x248,x249,x250,b251,b252,b253,b254,b255,b256,b257,b258,b259
,b260,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85
,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101
,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114
,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127
,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140
,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153
,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166
,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179
,x180,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192
,x193,x194,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205
,x206,x207,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218
,x219,x220,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231
,x232,x233,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244
,x245,x246,x247,x248,x249,x250;
Binary Variables b251,b252,b253,b254,b255,b256,b257,b258,b259,b260;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259
,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272
,e273,e274,e275,e276;
e1.. -(23.5458254446414*x1*x1 + 18.979955090698*x2*x2 + 40.4475389896435*x3*x3
+ 32.3871907368369*x4*x4 + 5.87832983721956*x5*x5 + 27.7861809155978*x6*
x6 + 29.0093260544642*x7*x7 + 27.8172341004716*x8*x8 + 23.8990137163284*x9
*x9 + 31.1572073885704*x10*x10 + 13.2824851151917*x11*x11 +
33.2405661163705*x12*x12 + 11.9226979325457*x13*x13 + 20.4359563497062*x14
*x14 + 24.448648939004*x15*x15 + 18.4191355125177*x16*x16 +
39.1206587833304*x17*x17 + 10.0203431071565*x18*x18 + 19.3631588126017*x19
*x19 + 23.3360726377184*x20*x20 + 28.9471017656799*x21*x21 +
11.4841952994712*x22*x22 + 6.08794717116601*x23*x23 + 23.4037893982626*x24
*x24 + 23.6180996877181*x25*x25 + 30.4354193350913*x26*x26 +
40.4712603455849*x27*x27 + 36.2213094971555*x28*x28 + 5.60976290451329*x29
*x29 + 23.1725988276517*x30*x30 + 20.1796238073169*x31*x31 +
4.57861955410779*x32*x32 + 30.5653982993017*x33*x33 + 50.4967526356669*x34
*x34 + 8.28478358470783*x35*x35 + 25.018545195819*x36*x36 +
12.6329611025149*x37*x37 + 27.6454711698144*x38*x38 + 33.9905967791569*x39
*x39 + 6.07228540920208*x40*x40 + 37.4354673126797*x41*x41 +
37.4709444132233*x42*x42 + 35.7354026371941*x43*x43 + 22.4419684331029*x44
*x44 + 32.5374941409*x45*x45 + 15.9337490518623*x46*x46 + 39.6539821536571
*x47*x47 + 34.007214287844*x48*x48 + 31.9891521836171*x49*x49 +
11.3076337580825*x50*x50 + 48.8107919790236*x51*x51 + 16.5702835116504*x52
*x52 + 17.1831503223043*x53*x53 + 35.1142641830025*x54*x54 +
29.1350141677348*x55*x55 + 47.6949431536515*x56*x56 + 32.149139849139*x57*
x57 + 52.2374267154665*x58*x58 + 29.9609434870647*x59*x59 +
42.6183607184712*x60*x60 + 38.2238650857062*x61*x61 + 29.3601737959953*x62
*x62 + 15.0635022726005*x63*x63 + 47.0245320338646*x64*x64 +
29.0759225713501*x65*x65 + 13.0424768501865*x66*x66 + 14.4753873350758*x67
*x67 + 22.3704949637257*x68*x68 + 42.3038766759241*x69*x69 +
49.2326533720743*x70*x70 + 46.1780910030554*x71*x71 + 29.881771182396*x72*
x72 + 30.5553734434501*x73*x73 + 3.7922842075966*x74*x74 + 39.37658717414*
x75*x75 + 38.4041161777079*x76*x76 + 25.9812660558023*x77*x77 +
20.5750893036448*x78*x78 + 18.2591550063973*x79*x79 + 21.315708405139*x80*
x80 + 33.6312833302058*x81*x81 + 15.2250454251428*x82*x82 +
40.6998421656809*x83*x83 + 38.4406211511874*x84*x84 + 26.1744753218587*x85
*x85 + 28.8520619191213*x86*x86 + 13.6877901486106*x87*x87 +
14.6611183170587*x88*x88 + 38.8217787386064*x89*x89 + 12.3633235324976*x90
*x90 + 22.2787064512218*x91*x91 + 20.7514901250986*x92*x92 +
25.2034704837712*x93*x93 + 30.6376270730567*x94*x94 + 39.5843101734575*x95
*x95 + 31.1038558069605*x96*x96 + 31.6979288753493*x97*x97 +
28.645307801904*x98*x98 + 14.1025463900177*x99*x99 + 24.4462384012991*x100
*x100 + 23.9588130600444*x101*x101 + 37.2092218308638*x102*x102 +
38.9284967423033*x103*x103 + 12.2912287240524*x104*x104 + 17.3040001983168
*x105*x105 + 15.1907239390981*x106*x106 + 10.214640056875*x107*x107 +
24.5444413988224*x108*x108 + 45.991792998601*x109*x109 + 8.80808064222724*
x110*x110 + 18.2698135895014*x111*x111 + 18.0129352025772*x112*x112 +
24.5906708393765*x113*x113 + 27.2479130814562*x114*x114 + 8.14284930897828
*x115*x115 + 34.6101764845155*x116*x116 + 39.6172338889732*x117*x117 +
31.2334618018089*x118*x118 + 15.8448912894477*x119*x119 + 25.9622870070524
*x120*x120 + 12.0380295338836*x121*x121 + 34.2734923291195*x122*x122 +
28.2417522551125*x123*x123 + 31.2100255255497*x124*x124 + 5.69874151661421
*x125*x125 + 20.1924959476585*x126*x126 + 25.1047390556883*x127*x127 +
50.8540191789234*x128*x128 + 40.7654848119428*x129*x129 + 13.1660129719096
*x130*x130 + 29.3477563113135*x131*x131 + 37.623504079514*x132*x132 +
25.0512445521536*x133*x133 + 24.194699080593*x134*x134 + 36.8817798615649*
x135*x135 + 13.4670522383906*x136*x136 + 42.8355399696766*x137*x137 +
21.9449104264389*x138*x138 + 14.6179503747045*x139*x139 + 33.2656663596617
*x140*x140 + 25.9752193871067*x141*x141 + 49.3747299640844*x142*x142 +
15.5177231557714*x143*x143 + 19.9897426371933*x144*x144 + 18.8657675463725
*x145*x145 + 32.1150351106216*x146*x146 + 10.6354802846521*x147*x147 +
6.03289686797428*x148*x148 + 33.2130951842154*x149*x149 + 28.5459989363559
*x150*x150 + 27.1814982971647*x151*x151 + 17.4732774311302*x152*x152 +
45.7430205440514*x153*x153 + 41.078689482825*x154*x154 + 14.0894075046248*
x155*x155 + 34.4518041752158*x156*x156 + 37.6827979486941*x157*x157 +
31.9402692210917*x158*x158 + 17.176342113498*x159*x159 + 39.5175600805753*
x160*x160 + 18.6428109082815*x161*x161 + 41.5887207579041*x162*x162 +
16.8382070886681*x163*x163 + 22.1667280473665*x164*x164 + 33.1071436309494
*x165*x165 + 18.7491083157469*x166*x166 + 43.8897007571818*x167*x167 +
8.18685938107562*x168*x168 + 25.3225669621538*x169*x169 + 26.1676213722903
*x170*x170 + 36.3794013637756*x171*x171 + 3.36357996902708*x172*x172 +
3.41423836465036*x173*x173 + 27.3030303493034*x174*x174 + 31.6570416640525
*x175*x175 + 29.2490776122094*x176*x176 + 47.155909768506*x177*x177 +
43.747688859322*x178*x178 + 10.7493671026891*x179*x179 + 27.3502033243542*
x180*x180 + 16.7299902035031*x181*x181 + 11.8402360490836*x182*x182 +
28.1306173784301*x183*x183 + 56.2444171745252*x184*x184 + 2.57815337422008
*x185*x185 + 26.6018920054246*x186*x186 + 19.1214185252706*x187*x187 +
34.3953781800726*x188*x188 + 34.0930847416161*x189*x189 + 13.8204269927978
*x190*x190 + 44.358450354143*x191*x191 + 45.1466792975147*x192*x192 +
41.4784118603196*x193*x193 + 22.1771123969423*x194*x194 + 31.6502071872129
*x195*x195 + 11.7484412314793*x196*x196 + 44.4308470618447*x197*x197 +
38.2511037822993*x198*x198 + 39.6390015319532*x199*x199 + 10.8473239818109
*x200*x200 + 32.7864705333551*x201*x201 + 10.2391421240902*x202*x202 +
39.5607896432743*x203*x203 + 39.8410872942397*x204*x204 + 15.9484846229643
*x205*x205 + 37.9732738105522*x206*x206 + 36.3288913334737*x207*x207 +
37.3308942844016*x208*x208 + 14.138807380771*x209*x209 + 40.5225760141947*
x210*x210 + 23.0942213546361*x211*x211 + 38.8745557957034*x212*x212 +
11.721117960742*x213*x213 + 28.5280949777182*x214*x214 + 31.7525052480902*
x215*x215 + 11.4257984420683*x216*x216 + 37.4452338564339*x217*x217 +
1.12488644365266*x218*x218 + 29.4353246473701*x219*x219 + 32.1453138866363
*x220*x220 + 39.0350080216973*x221*x221 + 6.46693171499145*x222*x222 +
9.11562848937319*x223*x223 + 20.7606750347532*x224*x224 + 33.4319480801873
*x225*x225 + 28.1441444643013*x226*x226 + 34.4021397840332*x227*x227 +
33.6749639035632*x228*x228 + 10.1168794661545*x229*x229 + 17.6213921739784
*x230*x230 + 20.3933915426277*x231*x231 + 6.98038357032972*x232*x232 +
29.2368220177179*x233*x233 + 44.3389168003468*x234*x234 + 12.4614270571251
*x235*x235 + 20.9897984897617*x236*x236 + 13.7049805915567*x237*x237 +
21.5807687963342*x238*x238 + 30.6259335202425*x239*x239 + 3.25199498753833
*x240*x240 + 31.4568158826796*x241*x241 + 34.4026496483618*x242*x242 +
29.5859985016407*x243*x243 + 19.9367729999238*x244*x244 + 29.9359444021784
*x245*x245 + 17.2658241038544*x246*x246 + 33.6872082476686*x247*x247 +
28.2574825233421*x248*x248 + 26.807114591537*x249*x249 + 10.9132753163671*
x250*x250) - 31*b251 - 99*b252 - 59*b253 - 85*b254 - 31*b255 - 18*b256
- 55*b257 - 56*b258 - 2*b259 - 42*b260 + objvar =E= 0;
e2.. x1 - b251 =L= 0;
e3.. x2 - b251 =L= 0;
e4.. x3 - b251 =L= 0;
e5.. x4 - b251 =L= 0;
e6.. x5 - b251 =L= 0;
e7.. x6 - b251 =L= 0;
e8.. x7 - b251 =L= 0;
e9.. x8 - b251 =L= 0;
e10.. x9 - b251 =L= 0;
e11.. x10 - b251 =L= 0;
e12.. x11 - b251 =L= 0;
e13.. x12 - b251 =L= 0;
e14.. x13 - b251 =L= 0;
e15.. x14 - b251 =L= 0;
e16.. x15 - b251 =L= 0;
e17.. x16 - b251 =L= 0;
e18.. x17 - b251 =L= 0;
e19.. x18 - b251 =L= 0;
e20.. x19 - b251 =L= 0;
e21.. x20 - b251 =L= 0;
e22.. x21 - b251 =L= 0;
e23.. x22 - b251 =L= 0;
e24.. x23 - b251 =L= 0;
e25.. x24 - b251 =L= 0;
e26.. x25 - b251 =L= 0;
e27.. x26 - b252 =L= 0;
e28.. x27 - b252 =L= 0;
e29.. x28 - b252 =L= 0;
e30.. x29 - b252 =L= 0;
e31.. x30 - b252 =L= 0;
e32.. x31 - b252 =L= 0;
e33.. x32 - b252 =L= 0;
e34.. x33 - b252 =L= 0;
e35.. x34 - b252 =L= 0;
e36.. x35 - b252 =L= 0;
e37.. x36 - b252 =L= 0;
e38.. x37 - b252 =L= 0;
e39.. x38 - b252 =L= 0;
e40.. x39 - b252 =L= 0;
e41.. x40 - b252 =L= 0;
e42.. x41 - b252 =L= 0;
e43.. x42 - b252 =L= 0;
e44.. x43 - b252 =L= 0;
e45.. x44 - b252 =L= 0;
e46.. x45 - b252 =L= 0;
e47.. x46 - b252 =L= 0;
e48.. x47 - b252 =L= 0;
e49.. x48 - b252 =L= 0;
e50.. x49 - b252 =L= 0;
e51.. x50 - b252 =L= 0;
e52.. x51 - b253 =L= 0;
e53.. x52 - b253 =L= 0;
e54.. x53 - b253 =L= 0;
e55.. x54 - b253 =L= 0;
e56.. x55 - b253 =L= 0;
e57.. x56 - b253 =L= 0;
e58.. x57 - b253 =L= 0;
e59.. x58 - b253 =L= 0;
e60.. x59 - b253 =L= 0;
e61.. x60 - b253 =L= 0;
e62.. x61 - b253 =L= 0;
e63.. x62 - b253 =L= 0;
e64.. x63 - b253 =L= 0;
e65.. x64 - b253 =L= 0;
e66.. x65 - b253 =L= 0;
e67.. x66 - b253 =L= 0;
e68.. x67 - b253 =L= 0;
e69.. x68 - b253 =L= 0;
e70.. x69 - b253 =L= 0;
e71.. x70 - b253 =L= 0;
e72.. x71 - b253 =L= 0;
e73.. x72 - b253 =L= 0;
e74.. x73 - b253 =L= 0;
e75.. x74 - b253 =L= 0;
e76.. x75 - b253 =L= 0;
e77.. x76 - b254 =L= 0;
e78.. x77 - b254 =L= 0;
e79.. x78 - b254 =L= 0;
e80.. x79 - b254 =L= 0;
e81.. x80 - b254 =L= 0;
e82.. x81 - b254 =L= 0;
e83.. x82 - b254 =L= 0;
e84.. x83 - b254 =L= 0;
e85.. x84 - b254 =L= 0;
e86.. x85 - b254 =L= 0;
e87.. x86 - b254 =L= 0;
e88.. x87 - b254 =L= 0;
e89.. x88 - b254 =L= 0;
e90.. x89 - b254 =L= 0;
e91.. x90 - b254 =L= 0;
e92.. x91 - b254 =L= 0;
e93.. x92 - b254 =L= 0;
e94.. x93 - b254 =L= 0;
e95.. x94 - b254 =L= 0;
e96.. x95 - b254 =L= 0;
e97.. x96 - b254 =L= 0;
e98.. x97 - b254 =L= 0;
e99.. x98 - b254 =L= 0;
e100.. x99 - b254 =L= 0;
e101.. x100 - b254 =L= 0;
e102.. x101 - b255 =L= 0;
e103.. x102 - b255 =L= 0;
e104.. x103 - b255 =L= 0;
e105.. x104 - b255 =L= 0;
e106.. x105 - b255 =L= 0;
e107.. x106 - b255 =L= 0;
e108.. x107 - b255 =L= 0;
e109.. x108 - b255 =L= 0;
e110.. x109 - b255 =L= 0;
e111.. x110 - b255 =L= 0;
e112.. x111 - b255 =L= 0;
e113.. x112 - b255 =L= 0;
e114.. x113 - b255 =L= 0;
e115.. x114 - b255 =L= 0;
e116.. x115 - b255 =L= 0;
e117.. x116 - b255 =L= 0;
e118.. x117 - b255 =L= 0;
e119.. x118 - b255 =L= 0;
e120.. x119 - b255 =L= 0;
e121.. x120 - b255 =L= 0;
e122.. x121 - b255 =L= 0;
e123.. x122 - b255 =L= 0;
e124.. x123 - b255 =L= 0;
e125.. x124 - b255 =L= 0;
e126.. x125 - b255 =L= 0;
e127.. x126 - b256 =L= 0;
e128.. x127 - b256 =L= 0;
e129.. x128 - b256 =L= 0;
e130.. x129 - b256 =L= 0;
e131.. x130 - b256 =L= 0;
e132.. x131 - b256 =L= 0;
e133.. x132 - b256 =L= 0;
e134.. x133 - b256 =L= 0;
e135.. x134 - b256 =L= 0;
e136.. x135 - b256 =L= 0;
e137.. x136 - b256 =L= 0;
e138.. x137 - b256 =L= 0;
e139.. x138 - b256 =L= 0;
e140.. x139 - b256 =L= 0;
e141.. x140 - b256 =L= 0;
e142.. x141 - b256 =L= 0;
e143.. x142 - b256 =L= 0;
e144.. x143 - b256 =L= 0;
e145.. x144 - b256 =L= 0;
e146.. x145 - b256 =L= 0;
e147.. x146 - b256 =L= 0;
e148.. x147 - b256 =L= 0;
e149.. x148 - b256 =L= 0;
e150.. x149 - b256 =L= 0;
e151.. x150 - b256 =L= 0;
e152.. x151 - b257 =L= 0;
e153.. x152 - b257 =L= 0;
e154.. x153 - b257 =L= 0;
e155.. x154 - b257 =L= 0;
e156.. x155 - b257 =L= 0;
e157.. x156 - b257 =L= 0;
e158.. x157 - b257 =L= 0;
e159.. x158 - b257 =L= 0;
e160.. x159 - b257 =L= 0;
e161.. x160 - b257 =L= 0;
e162.. x161 - b257 =L= 0;
e163.. x162 - b257 =L= 0;
e164.. x163 - b257 =L= 0;
e165.. x164 - b257 =L= 0;
e166.. x165 - b257 =L= 0;
e167.. x166 - b257 =L= 0;
e168.. x167 - b257 =L= 0;
e169.. x168 - b257 =L= 0;
e170.. x169 - b257 =L= 0;
e171.. x170 - b257 =L= 0;
e172.. x171 - b257 =L= 0;
e173.. x172 - b257 =L= 0;
e174.. x173 - b257 =L= 0;
e175.. x174 - b257 =L= 0;
e176.. x175 - b257 =L= 0;
e177.. x176 - b258 =L= 0;
e178.. x177 - b258 =L= 0;
e179.. x178 - b258 =L= 0;
e180.. x179 - b258 =L= 0;
e181.. x180 - b258 =L= 0;
e182.. x181 - b258 =L= 0;
e183.. x182 - b258 =L= 0;
e184.. x183 - b258 =L= 0;
e185.. x184 - b258 =L= 0;
e186.. x185 - b258 =L= 0;
e187.. x186 - b258 =L= 0;
e188.. x187 - b258 =L= 0;
e189.. x188 - b258 =L= 0;
e190.. x189 - b258 =L= 0;
e191.. x190 - b258 =L= 0;
e192.. x191 - b258 =L= 0;
e193.. x192 - b258 =L= 0;
e194.. x193 - b258 =L= 0;
e195.. x194 - b258 =L= 0;
e196.. x195 - b258 =L= 0;
e197.. x196 - b258 =L= 0;
e198.. x197 - b258 =L= 0;
e199.. x198 - b258 =L= 0;
e200.. x199 - b258 =L= 0;
e201.. x200 - b258 =L= 0;
e202.. x201 - b259 =L= 0;
e203.. x202 - b259 =L= 0;
e204.. x203 - b259 =L= 0;
e205.. x204 - b259 =L= 0;
e206.. x205 - b259 =L= 0;
e207.. x206 - b259 =L= 0;
e208.. x207 - b259 =L= 0;
e209.. x208 - b259 =L= 0;
e210.. x209 - b259 =L= 0;
e211.. x210 - b259 =L= 0;
e212.. x211 - b259 =L= 0;
e213.. x212 - b259 =L= 0;
e214.. x213 - b259 =L= 0;
e215.. x214 - b259 =L= 0;
e216.. x215 - b259 =L= 0;
e217.. x216 - b259 =L= 0;
e218.. x217 - b259 =L= 0;
e219.. x218 - b259 =L= 0;
e220.. x219 - b259 =L= 0;
e221.. x220 - b259 =L= 0;
e222.. x221 - b259 =L= 0;
e223.. x222 - b259 =L= 0;
e224.. x223 - b259 =L= 0;
e225.. x224 - b259 =L= 0;
e226.. x225 - b259 =L= 0;
e227.. x226 - b260 =L= 0;
e228.. x227 - b260 =L= 0;
e229.. x228 - b260 =L= 0;
e230.. x229 - b260 =L= 0;
e231.. x230 - b260 =L= 0;
e232.. x231 - b260 =L= 0;
e233.. x232 - b260 =L= 0;
e234.. x233 - b260 =L= 0;
e235.. x234 - b260 =L= 0;
e236.. x235 - b260 =L= 0;
e237.. x236 - b260 =L= 0;
e238.. x237 - b260 =L= 0;
e239.. x238 - b260 =L= 0;
e240.. x239 - b260 =L= 0;
e241.. x240 - b260 =L= 0;
e242.. x241 - b260 =L= 0;
e243.. x242 - b260 =L= 0;
e244.. x243 - b260 =L= 0;
e245.. x244 - b260 =L= 0;
e246.. x245 - b260 =L= 0;
e247.. x246 - b260 =L= 0;
e248.. x247 - b260 =L= 0;
e249.. x248 - b260 =L= 0;
e250.. x249 - b260 =L= 0;
e251.. x250 - b260 =L= 0;
e252.. x1 + x26 + x51 + x76 + x101 + x126 + x151 + x176 + x201 + x226 =E= 1;
e253.. x2 + x27 + x52 + x77 + x102 + x127 + x152 + x177 + x202 + x227 =E= 1;
e254.. x3 + x28 + x53 + x78 + x103 + x128 + x153 + x178 + x203 + x228 =E= 1;
e255.. x4 + x29 + x54 + x79 + x104 + x129 + x154 + x179 + x204 + x229 =E= 1;
e256.. x5 + x30 + x55 + x80 + x105 + x130 + x155 + x180 + x205 + x230 =E= 1;
e257.. x6 + x31 + x56 + x81 + x106 + x131 + x156 + x181 + x206 + x231 =E= 1;
e258.. x7 + x32 + x57 + x82 + x107 + x132 + x157 + x182 + x207 + x232 =E= 1;
e259.. x8 + x33 + x58 + x83 + x108 + x133 + x158 + x183 + x208 + x233 =E= 1;
e260.. x9 + x34 + x59 + x84 + x109 + x134 + x159 + x184 + x209 + x234 =E= 1;
e261.. x10 + x35 + x60 + x85 + x110 + x135 + x160 + x185 + x210 + x235 =E= 1
;
e262.. x11 + x36 + x61 + x86 + x111 + x136 + x161 + x186 + x211 + x236 =E= 1
;
e263.. x12 + x37 + x62 + x87 + x112 + x137 + x162 + x187 + x212 + x237 =E= 1
;
e264.. x13 + x38 + x63 + x88 + x113 + x138 + x163 + x188 + x213 + x238 =E= 1
;
e265.. x14 + x39 + x64 + x89 + x114 + x139 + x164 + x189 + x214 + x239 =E= 1
;
e266.. x15 + x40 + x65 + x90 + x115 + x140 + x165 + x190 + x215 + x240 =E= 1
;
e267.. x16 + x41 + x66 + x91 + x116 + x141 + x166 + x191 + x216 + x241 =E= 1
;
e268.. x17 + x42 + x67 + x92 + x117 + x142 + x167 + x192 + x217 + x242 =E= 1
;
e269.. x18 + x43 + x68 + x93 + x118 + x143 + x168 + x193 + x218 + x243 =E= 1
;
e270.. x19 + x44 + x69 + x94 + x119 + x144 + x169 + x194 + x219 + x244 =E= 1
;
e271.. x20 + x45 + x70 + x95 + x120 + x145 + x170 + x195 + x220 + x245 =E= 1
;
e272.. x21 + x46 + x71 + x96 + x121 + x146 + x171 + x196 + x221 + x246 =E= 1
;
e273.. x22 + x47 + x72 + x97 + x122 + x147 + x172 + x197 + x222 + x247 =E= 1
;
e274.. x23 + x48 + x73 + x98 + x123 + x148 + x173 + x198 + x223 + x248 =E= 1
;
e275.. x24 + x49 + x74 + x99 + x124 + x149 + x174 + x199 + x224 + x249 =E= 1
;
e276.. x25 + x50 + x75 + x100 + x125 + x150 + x175 + x200 + x225 + x250
=E= 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

