MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance srcpm
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2109.78183300 (ANTIGONE) 2109.78183100 (BARON) 2109.65258100 (COUENNE) 2109.78183300 (LINDO) 2109.78183300 (SCIP) |
Referencesⓘ | Manne, Alan S, Nelson, C R, So, K C, and Weyant, J P, CPM: A Contingency Planning Model of the International Oil Market, International Energy Program Report, Tech. Rep., Stanford University, 1982. |
Sourceⓘ | GAMS Model Library model srcpm |
Applicationⓘ | Contingency Planning |
Added to libraryⓘ | 31 Jul 2001 |
Removed from libraryⓘ | 16 Feb 2022 |
Removed becauseⓘ | Instance is continuous and convex. |
Problem typeⓘ | NLP |
#Variablesⓘ | 39 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | signomial |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 5 |
#Constraintsⓘ | 27 |
#Linear Constraintsⓘ | 27 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 156 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 5 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 5 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0000e-02 |
Maximal coefficientⓘ | 5.1300e+06 |
Infeasibility of initial pointⓘ | 2.274e-13 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 28 2 14 12 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 40 40 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 163 158 5 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28; e1.. - x3 - x4 + x23 =G= 0; e2.. - x5 - x6 + x24 =G= 0; e3.. - x7 - x8 + x25 =G= 0; e4.. - x9 - x10 + x26 =G= -0.7; e5.. - x11 - x12 + x27 =G= 0; e6.. - x13 - x14 + x28 =G= 0; e7.. - x1 - x2 + x29 =G= 0; e8.. 0.35*x3 + 0.34*x4 + 0.5*x5 + 0.49*x6 + 0.68*x7 + 0.67*x8 - x17 - x18 + 0.99*x21 + 0.99*x22 - x32 =G= 0; e9.. 0.38*x9 + 0.38*x10 + 0.48*x11 + 0.47*x12 + 0.66*x13 + 0.65*x14 - x19 - x20 - x21 - x22 - x33 =G= 0; e10.. 0.2*x1 + 0.2*x2 + 0.96*x15 + 0.96*x16 + 0.67*x17 + 0.36*x18 + 0.61*x19 + 0.25*x20 - x30 - x34 =G= 0; e11.. 0.28*x3 + 0.28*x4 + 0.25*x5 + 0.25*x6 + 0.2*x7 + 0.2*x8 + 0.26*x9 + 0.26*x10 + 0.23*x11 + 0.23*x12 + 0.18*x13 + 0.18*x14 + 0.07*x17 + 0.18*x18 + 0.02*x19 + 0.1*x20 + x30 + 0.93*x31 - x35 =G= -0.5; e12.. 0.8*x1 + 0.8*x2 + 0.35*x3 + 0.35*x4 + 0.23*x5 + 0.23*x6 + 0.1*x7 + 0.1*x8 + 0.33*x9 + 0.33*x10 + 0.27*x11 + 0.27*x12 + 0.14*x13 + 0.14*x14 - x15 - x16 + 0.04*x17 + 0.03*x18 + 0.06*x19 + 0.04*x20 - x31 - x36 =G= 0; e13.. 0.23*x17 + 0.42*x18 + x32 - x37 =G= 0; e14.. 0.3*x19 + 0.6*x20 + x33 - x38 =G= -0.1; e15.. x1 =L= 3.4; e16.. x2 =L= 0; e17.. x21 =L= 2.7; e18.. x22 =L= 0.3; e19.. x3 + x5 + x7 + x9 + x11 + x13 =L= 50.5; e20.. x4 + x6 + x8 + x10 + x12 + x14 =L= 7.5; e21.. x15 =L= 7.1; e22.. x16 =L= 0.8; e23.. x17 + x19 =L= 7.3; e24.. x18 + x20 =L= 2.9; e25.. - 0.83*x17 + x19 =L= 3.9; e26.. x20 =L= 2.5; e27.. - 0.45*x3 - 0.5*x4 - 0.45*x5 - 0.5*x6 - 0.45*x7 - 0.5*x8 - 0.5*x9 - 0.55*x10 - 0.5*x11 - 0.55*x12 - 0.5*x13 - 0.55*x14 - 0.41*x15 - 0.5*x16 - 0.27*x17 - 0.45*x18 - 0.32*x19 - 0.28*x20 - 0.9*x21 - x22 - 32*x23 - 32*x24 - 32*x25 - 32*x26 - 32*x27 - 32*x28 - 32*x29 + 0.3*x30 + x39 =E= 0; e28.. -(-3865470.56640001*x34**(-4) - 5130022.82472*x35**(-4) - 423446.8691225* x36**(-4) - 1808.40439881057*x37**(-2.33333333333333) - 17313.2956782741* x38**(-2.33333333333333)) + x39 - objvar =E= 0; * set non-default bounds x23.up = 13.6; x24.up = 1.1; x25.up = 1; x26.up = 16.2; x27.up = 8.9; x28.up = 4.4; x29.up = 3.1; x30.up = 1.7; x31.up = 1.9; x34.lo = 2; x35.lo = 2; x36.lo = 2; x37.lo = 2; x38.lo = 2; * set non-default levels x1.l = 3.1; x3.l = 13.6; x5.l = 1.1; x7.l = 1; x9.l = 16.4244058299284; x11.l = 8.9; x13.l = 4.4; x15.l = 7.1; x16.l = 0.8; x17.l = 5.56103683518173; x18.l = 0.312071787775987; x19.l = 1.73896316481828; x20.l = 2.5; x21.l = 2.7; x23.l = 13.6; x24.l = 1.1; x25.l = 1; x26.l = 15.7244058299284; x27.l = 8.9; x28.l = 4.4; x29.l = 3.1; x30.l = 0.928008053710258; x31.l = 0.268195340806014; x32.l = 2.78989137704229; x33.l = 6.47831105055452; x34.l = 12.8; x35.l = 13.8; x36.l = 8.3; x37.l = 4.2; x38.l = 8.6; x39.l = 1560.6691675193; * set non-default marginals e1.m = 1; e2.m = 1; e3.m = 1; e4.m = 1; e5.m = 1; e6.m = 1; e7.m = 1; e8.m = 1; e9.m = 1; e10.m = 1; e11.m = 1; e12.m = 1; e13.m = 1; e14.m = 1; e16.m = 1; e17.m = 1; e21.m = 1; e22.m = 1; e23.m = 1; e26.m = 1; e27.m = 1; x4.m = 1; x6.m = 1; x8.m = 1; x10.m = 1; x12.m = 1; x14.m = 1; x22.m = 1; x23.m = 1; x24.m = 1; x25.m = 1; x27.m = 1; x28.m = 1; x29.m = 1; x34.m = 1; x35.m = 1; x36.m = 1; x37.m = 1; x38.m = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f